Civil Engineering Services Report (S179A) For

Development at Ballymakenny Road, Drogheda, Co. Louth
 Louth County Council

HE=M

Contents

1. Introduction
2. Site
3. Surface Water Drainage System
4. Wastewater System
5. Water Supply System
6. Flood Risk Assessment
7. Site Layout
8. DMURS
9. Services Design Summary

Appendix A - Proposed Drainage Layout
Appendix B - Proposed Watermain Layout
Appendix C - Site Survey
Appendix D - Surface Water Calculations
Appendix E - Swept Path Analysis
Appendix F - Site Investigation Report
Appendix G - Confirmation of Feasibility
Appendix H - Road Safety Audit
Appendix I - Traffic Impact Assessment
Appendix J - SUDS / Green Infrastructure Feasibility Checklist
Appendix K - DMURS Statement of Consistency

DOCUMENT CONTROL SHEET

	Client	Louth County Council							
	Project Title	Development Ballymakenny Road, Drogheda. Social Housing Homes, Community Facilities \& Associated Works via Modern Methods of Construction							
	Project Ref.	23D047							
	Document Title	S179A							
	Document No.	23D047-PR 01							
	This Document Comprises	DCS	PD	TOC	Text	-	-	-	Appendices
		1	-	1	5				11
	Check								

Revision	Status	Author	Reviewed By	Approved By	Issue Dates
P	S 179 A	RM	LM	DH	April 2024

1. Introduction

Hayes Higgins Partnership has been commissioned to prepare a Civil Engineering Services Report for the proposed development at Ballymakenny Road, Drogheda, County Louth.

This report was compiled after reviewing the available information on drainage and water supply, reviewing the OPW flood maps and other available information. It contains information on the design of the surface water and wastewater systems to be constructed for the proposed development. The compilation of information on the existing public mains, wastewater and surface water lines is complete with a survey to confirm levels, sizes and other information necessary for a more detailed design.

The design of both the surface water and wastewater systems has been carried out in accordance with the following:

- The Greater Dublin Regional Code of Practice for Drainage Works
- Technical Guidance Document H of the Building Regulations
- The Greater Dublin Strategic Drainage Study (GDSDS)
- DOE Recommendations for Site Development Works for Housing Areas
- BS 8301:1985, Code of practice for Building Drainage
- BS EN 752 External building drainage
- OPW The Planning System and Flood Risk Management
- Irish Water Code of Practice and Standard Details (Water \& Wastewater)
- DMURS- Design Manual for Urban Roads and Streets
- Louth County Council codes of practice

The wastewater system for the proposed development is a gravity feed system within the site falling to a pump station then pumped to the existing wastewater network, The proposed surface water drainage system is a gravity feed drainage system to an existing line via an attenuation system on site. The surface water system is designed to take the runoff generated by a 1 in 100 year storm event $1+20 \%$ for climate change). The outfall from the surface water system is detailed below.

2. Site

The site in question is located to the north of Drogheda town centre in County Louth. The existing site is a greenfield site \& is zoned A2 New residential Phase 1 in the Louth County Development Plan. The construction of 97no. houses including 12no. 2-bed bungalows, 40no. two storey 2-bed houses, 30no. two
storey 3-bed houses, 13 no. two storey 4-bed houses, and 2no. 3-bed bungalows on a site of c. 3.03 hectares in the townland of Yellowbatter at Ballymakenny Road, Drogheda, Co Louth.

The development will also include the construction of a new entrance onto the Ballymakenny Road; provision of new cycleway, footpath, and public lighting along the Ballymakenny Road; new estate roads and homezones within the site; 120no. car parking spaces including both on-street and in-curtilage parking: cycle parking; hard and soft landscaping including public open spaces, playground, and private gardens; boundary treatments; ESB substation; lighting; laying of underground sewers, mains and pipes; underground pump station and attenuation tanks; and all associated works.

The site is bound by hedgerow and a precast concrete fence to the west. There is a commercial and industrial site to the North that is bound by a steel palisade fence and a greenfield site to the north west that is bound by hedgerow. The site is bound to the east by Ballymakenny Road and to the south by a boundary wall of a residential estate. The topography of the site shows a general downward slope from east to west. A copy of the site survey drawing is included in Appendix C. The development will be accessed from a proposed entrance on Ballymakenny Road, this entrance is located along the eastern boundary. Residents will have parking spaces located within the site.

3. Surface Water Drainage

Local Authorities require that all developments must include a sustainable urban drainage system, SuDS. A site investigation was undertaken to establish the permeability of the site. The site investigation advises the site does not have any available infiltration and as such permeable surfaces and natural infiltration are not viable, refer to appendix F. Reference to the attached SUDS / Green Infrastructure Checklist Appendix J. As the conditions on site are not favourable to infiltration a modular attenuation system connected to the existing surface drainage network, via a hydrobrake limiting discharge to $2 \mathrm{l} / \mathrm{s} / \mathrm{ha}$, is to be used to channel the surface water from the developed site.

A gravity feed surface water system will serve the hardstanding on site. The main surface network in the proposed development are to consist of 225 mm diameter UPVC pipes with fall $1 / 150$. There are two attenuation modular tanks located within the site, the first is located in the central open space, located between blocks 6/7 and 18/19, and the second is located in the western open space opposite block no 12 of the site. There is an adjacent available surface water line to the west of the site. The possible outfall connection as indicated on the drawing is indicated.

The required storage volume to retain the on-site runoff for is $870 \mathrm{~m}^{3}$. A modular type attenuation system will be provided. To alleviate any possible risk of flood the storage is designed for a 1 in 100 year storm
(+20\%). A 20% increase in runoff due to global warming is included as per "Greater Dublin Regional Code of Practice for Drainage Works" and the "GDSDS".

The surface water network has been designed in accordance with BS EN 752, Code of Practice for Drainage Outside Buildings. Details of the proposed surface water drainage system are shown in Hayes Higgins Partnership drawing within Appendix A and calculations within Appendix D.

4. Wastewater Drainage

The wastewater system has been designed in accordance with Irish Water Code of Practice and Standard Details for Wastewater, BS 8301:1985, Code of Practice for Building Drainage and the current Building Regulations.

The wastewater system for the development is a gravity feed system falling to a proposed pumping station at the west of the site, in an open space. The pumping station will pump the foul to a 225 mm diameter existing sewer in Ballymakenny Road. Development will not result in a significant increase in foul discharge from the site on the public sewer and we do not anticipate any capacity problems. Refer to attached, Confirmation of Feasibility from Irish Water, Appendix G. The wastewater network in the proposed development is to consist of 225 mm diameter UPVC pipes with required fall chosen throughout to suit. A roughness coefficient (ks) of 0.6 mm is applied to the design of all pipes.

A Pre-Connection Enquiry form was submitted to Irish Water and Confirmation of Feasibility received. Refer to appendix G. The drawings included with the SI79A proposal show the proposed foul drainage layout. Details of the proposed foul sewer are shown in Hayes Higgins Partnership drawing within Appendix A. Final designs are subject to agreement with Irish Water at Connection Application Stage.

5. Water Supply System

There is recently completed upgrade works on Ballymakenny Road, completed in 2023, where a feasible connection may be made to the 100 mm diameter watermain, and the proposed 100 mm HDPE looped watermain on site will connect to this main line. A topographical survey has been completed to verify cover \& invert levels of the existing water network in the vicinity of the development.

In accordance with requirements air valves and scour valves will be provided around the site as necessary. Hydrants will be provided as required by Technical Guidance Document B of the Building Regulations 2006.

Water saving devices including aerated taps and low water usage appliances will be used in the proposed development in accordance with best practice. The water supply system has been designed and will be installed in accordance with Irish Water Code of Practice and Standard Details for Water.

A Pre-Connection Enquiry form was submitted to Irish Water and Confirmation of Feasibility received. Refer to appendix G. The proposed watermain layout and details are shown on Hayes Higgins Partnership drawing within Appendix B. Final designs are subject to agreement with Irish Water at Connection Application Stage.

6. Flood Risk Assessment

A flood risk assessment was undertaken to identify possible sources of flooding and the risk posed to the development, and separately the risk posed to surrounding areas as a result of the development. The site is noted as not being in a flood zone for either coastal or fluvial flooding. The site also has a downhill gradient east to west.

External Sources

Flood maps website, www.floodmaps.ie has been reviewed. This shows that the site has not been subjected to flooding during previously reported flooding events. As such it is reasonable to assume there is no risk to the proposed development resulting from flooding off-site.

Internal sources

It is intended that all surface water run off generated by the 1 in 100 year storm will be dealt with via an attenuation tank. An allowance has been made for a 20% increase in runoff due to global warming, as per the "Greater Dublin Strategic Drainage Study" recommendations.

7. Site Layout

This development has been designed in accordance with the Design Manual for Urban Roads and Streets (DMURS), refer to road layout drawing, minimum footpath widths and junction radii have been provided to comply with DMURS. A swept path analysis has been carried out for a fire truck as shown on drawings attached, refer to appendix E. A Road Safety Audit and Traffic Impact Assessment have been completed by Roadplan. Please refer to Appendix H and I.

8. DMURS Statement of Consistency

The proposed site layout is confirmed to abide by the guidelines as set out in the Design Manual for Urban Roads and Streets (DMURS). Refer to attached Appendix K - DMURS Statement of Consistency

9. Services Design Summary

The proposed surface water drainage system has been designed so as to ensure that adequate selfcleansing velocities are obtained, adequate attenuation \& sustainable drainage systems in accordance with the Building Regulations, and comply in full with the Greater Dublin Regional Code of Practice for Drainage Works. Similarly, the proposed wastewater system has been designed so as to ensure that adequate self-cleansing velocities are obtained for partial flows under design loading, in accordance with the Building Regulations and Irish Water Code of Practice and Standard Details for Water \& Wastewater.

Local roads \& streets are designed in accordance with DMURS \& the objectives of the Louth County Development Plan to be safe, attractive \& comfortable for all users. The design encourages the use of sustainable modes of transport with facilities for pedestrians/cyclists including the provision of bicycle parking. There is also provision for electric vehicle charge points within the site. Footpaths \& cycle lanes will connect with proposed \& existing infrastructure in the vicinity. The development will be served by an existing local bus service.

Appendix A - Proposed Drainage Layout

(See accompanying drawings listed below)

Appendix B - Proposed Watermain Layout

(See accompanying drawings listed below)

Appendix C - Site Survey

Appendix D - Surface Water Calculations

Extreme Rainfall Return Periods

Location:
Ballymakenny, Louth Co Co
Average Annual Rainfall:

Maximum rainfall (mm) of indicated duration expected in the indicated return period.

		Return Period (years)											
Dur		1/2	1	2	3	4	5	10	20	30	50	75	100
5 min	5	2.5	3.4	3.9	4.7	5.2	5.6	6.8	8.2	9.1	10.4	11.6	12.5
10 min	10	3.4	4.8	5.5	6.5	7.2	7.7	9.5	11.5	12.7	14.5	16.1	17.4
15 min	15	4.1	5.6	6.4	7.7	8.5	9.1	11.2	13.5	15.0	17.1	19.0	20.4
30 min	30	5.4	7.3	8.3	9.8	10.8	11.6	14.1	16.8	18.6	21.1	23.2	24.9
60 min	60	7.2	9.6	10.8	12.6	13.8	14.8	17.7	21.0	23.0	25.9	28.4	30.4
2 hour	120	9.5	12.5	14.0	16.2	17.7	18.8	22.3	26.1	28.6	31.9	34.8	37.0
3 hour	180	11.2	14.6	16.3	18.8	20.4	21.6	25.5	29.7	32.4	36.0	39.2	41.6
4 hour	240	12.7	16.3	18.2	20.9	22.6	23.9	28.1	32.6	35.4	39.3	42.6	45.1
6 hour	360	14.9	19.1	21.2	24.1	26.1	27.5	32.1	37.0	40.1	44.3	47.9	50.7
9 hour	540	17.7	22.3	24.6	28.0	30.1	31.7	36.8	42.1	45.5	50.1	54.0	56.9
12 hour	720	19.9	24.9	27.4	31.0	33.3	35.1	40.5	46.2	49.7	54.6	58.7	61.8
18 hour	1080	23.5	29.2	32.0	35.9	38.5	40.4	46.3	52.5	56.4	61.6	66.0	69.4
24 hour	1440	26.4	32.6	35.6	39.9	42.6	44.6	50.9	57.5	61.6	67.1	71.8	75.3
48 hour	2880	32.4	39.5	43.0	47.9	51.1	53.4	60.6	68.0	72.6	78.8	84.0	87.9

1in5 mm/hr			
21.5	23.40	$2530 \mathrm{~mm} / \mathrm{hr}$	in $100 \mathrm{~mm} / \mathrm{hr}$
29.9	32.70	35.00	N/A
35.2	38.40	41.10	N/A
43.4	47.20	50.40	N/A
53.4	58.00	61.70	N/A
65.8	71.20	75.60	N/A
74.3	80.30	85.20	N/A
81.1	87.40	92.60	N/A
91.6	98.60	104.30	N/A
103.4	111.10	117.50	N/A
112.8	121.00	127.80	N/A
127.4	136.50	143.90	N/A
138.9	148.60	156.60	184.20
153.7	163.50	171.50	199.10

Rainfall Intensities increased by 20\% to allow for Global Warming

		Return Period (years)											
Dur		1/2	1	2	3	4	5	10	20	30	50	75	100
5 min	5	3.0	4.1	4.7	5.6	6.2	6.7	8.2	9.8	10.9	12.5	13.9	15.0
10 min	10	4.1	5.8	6.6	7.8	8.6	9.2	11.4	13.8	15.2	17.4	19.3	20.9
15 min	15	4.9	6.7	7.7	9.2	10.2	10.9	13.4	16.2	18.0	20.5	22.8	24.5
30 min	30	6.5	8.8	10.0	11.8	13.0	13.9	16.9	20.2	22.3	25.3	27.8	29.9
60 min	60	8.6	11.5	13.0	15.1	16.6	17.8	21.2	25.2	27.6	31.1	34.1	36.5
2 hour	120	11.4	15.0	16.8	19.4	21.2	22.6	26.8	31.3	34.3	38.3	41.8	44.4
3 hour	180	13.4	17.5	19.6	22.6	24.5	25.9	30.6	35.6	38.9	43.2	47.0	49.9
4 hour	240	15.2	19.6	21.8	25.1	27.1	28.7	33.7	39.1	42.5	47.2	51.1	54.1
6 hour	360	17.9	22.9	25.4	28.9	31.3	33.0	38.5	44.4	48.1	53.2	57.5	60.8
9 hour	540	21.2	26.8	29.5	33.6	36.1	38.0	44.2	50.5	54.6	60.1	64.8	68.3
12 hour	720	23.9	29.9	32.9	37.2	40.0	42.1	48.6	55.4	59.6	65.5	70.4	74.2
18 hour	1080	28.2	35.0	38.4	43.1	46.2	48.5	55.6	63.0	67.7	73.9	79.2	83.3
24 hour	1440	31.7	39.1	42.7	47.9	51.1	53.5	61.1	69.0	73.9	80.5	86.2	90.4
48 hour	2880	38.9	47.4	51.6	57.5	61.3	64.1	72.7	81.6	87.1	94.6	100.8	105.5

1in5 mm/hr	in30 mm/hr	in100 mm/hr
80.64	131.04	180.00
55.44	91.44	125.28
43.68	72.00	97.92
27.84	44.64	59.76
17.76	27.60	36.48
11.28	17.16	22.20
8.64	12.96	16.64
7.17	10.62	13.53
5.50	8.02	10.14
4.23	6.07	7.59
3.51	4.97	6.18
2.69	3.76	4.63
2.23	3.08	3.77
1.34	1.82	2.20

23D047 - Surface Water Attenutation Calculation 1-100 + 20\%

Time	1	2	3	4	5	6
	Storm Frequency \& Duration	Rainfall (mm)	Rainfall Intensity $(\mathrm{mm} / \mathrm{hr})$	Potential Run-off From Developed Site (l/s)	Allowable Runoff From Developed Site (l/s)	Storage Requirement \qquad (m3)
5	M100-5 min	15.00	180.00	729.59	2.0	218.3
10	M100-10 min	20.88	125.28	507.80	2.0	303.5
15	M100-15 min	24.48	97.92	396.90	2.0	355.4
30	M100-30 min	29.88	59.76	242.23	2.0	432.4
60	M100-60 min	36.48	36.48	147.86	2.0	525.1
120	M100-2 hr	44.40	22.20	89.98	2.0	633.5
180	M100-3 hr	49.92	16.64	67.45	2.0	706.8
240	M100-4hr	54.12	13.53	54.84	2.0	760.9
360	M100-6 hr	60.84	10.14	41.10	2.0	844.6
540	M100-9 hr	68.28	7.59	30.75	2.0	931.5
720	M100-12 hr	74.16	6.18	25.05	2.0	995.7
1080	M100-18 hr	83.28	4.63	18.75	2.0	1085.6
1440	M100-24 hr	90.36	3.77	15.26	2.0	1145.7
2880	M100-2day	105.48	2.20	8.91	2.0	1193.6
	Allowable Run-off	2	1/s			
		Area	Factor	Total		
	Paving	8263	1	8263	m^{2}	
	Roof	6329	1	6329	m^{2}	
Total Area				14592	m^{2}	

PROJECT REF:	23D047
LOCATION:	Ballymakenny, Louth County
DATE:	4.12 .23

SYSTEM PARAMETERS

Required Total Storage	425
Stormtech chamber model	MC4500
Filtration Permeable Geo or Impermeable Geo	Filter geo
Number of Isolator Rows (IR)	1

SITE PARAMETERS

Stone Porosity	40%	
Excavation Batter Angle (degrees)	60	
Stone Above Chambers	0.3	m
Stone Below Chambers	0.23	0.30
In-between Row Spacing	0.30	0.23
Additional Storage outside Excavation. E.g manholes, Header Pipe	0.23	

Additional Storage outside Excavation. E.g manholes, Header Pipe
HEADER PIPE

Is Header pipe required within excavation	No
Orientation of Header Pipe	Parrallel to IR
Diameter of Header Pipe	0.225
Length of Header Pipe	0

CHAMBER SYSTEM DIMENSIONS

Number of Rows
Number of units per Row
System Installed Storage Depth (effective storage depth)
Tank overall installed Width at base
Tank overall installed Length at Base
Total Effective System Storage
Calculated Adopted

Calculated	Adopted
	5 ea
	18 ea
2.055	m
14.50	15 m
24.3	25 m
501.3	$521.1 \mathrm{~m}^{3}$

STORMTECH SYSTEM DETAIL

StormTech Chamber Model	MC4500	
Unit Width	2.54	m
Unit Length	1.23	m
Unit Height	1.525	m
Min Cover Over System	0.3	m
Max Cover Over Chamber	2.1	m
Chamber Internal Storage Vol.	3.01	$\mathrm{~m}^{3}$
Header Pipe Internal Storage Vol in Excavation	0.0	$\mathrm{~m}^{3}$

Volume of Dig for System	874	
Width at base	15.00	$\mathrm{~m}^{3}$
Width at top	17.37	m
Length at base	25.00	m
Length at top	27.37	m
Depth Of System	2.06	m
Area of Dig at Base of System	375	$\mathrm{~m}^{2}$
Area of Dig at Top of System	476	$\mathrm{~m}^{2}$
Void Ratio	60%	
Stone Requirement - m3	590	$\mathrm{~m}^{3}$
Stone Requirement - tonne	968	tonne

PROJECT REF:	23D047
LOCATION:	Ballymakenny, Louth County
DATE:	4.12 .23

SYSTEM PARAMETERS

Required Total Storage	285
Stormtech chamber model	MC4500
Filtration Permeable Geo or Impermeable Geo	Filter geo
Number of Isolator Rows (IR)	1

SITE PARAMETERS

Stone Porosity	40%	
Excavation Batter Angle (degrees)	60	
Stone Above Chambers	0.3	m
Stone Below Chambers	0.23	0.30
In-between Row Spacing	0.30	0.23
Additional Storage outside Excavation. E.g manholes, Header Pipe	0.23	

Additional Storage outside Excavation. E.g manholes, Header Pipe
HEADER PIPE

Is Header pipe required within excavation	No
Orientation of Header Pipe	Parrallel to IR
Diameter of Header Pipe	0.225 m
Length of Header Pipe	0

CHAMBER SYSTEM DIMENSIONS

Number of Rows
Number of units per Row
System Installed Storage Depth (effective storage depth)
Tank overall installed Width at base
Tank overall installed Length at Base
Total Effective System Storage

STORMTECH SYSTEM DETAIL

StormTech Chamber Model	MC4500	
Unit Width	2.54	m
Unit Length	1.23	m
Unit Height	1.525	m
Min Cover Over System	0.3	m
Max Cover Over Chamber	2.1	m
Chamber Internal Storage Vol.	3.01	$\mathrm{~m}^{3}$
Header Pipe Internal Storage Vol in Excavation	0.0	$\mathrm{~m}^{3}$

Volume of Dig for System	490	$\mathrm{~m}^{3}$
Width at base	20.00	m
Width at top	22.37	m
Length at base	10.00	m
Length at top	12.37	m
Depth Of System	2.06	m
Area of Dig at Base of System	200	277
Area of Dig at Top of System	58%	$\mathrm{~m}^{2}$
Void Ratio	346	$\mathrm{~m}^{3}$
Stone Requirement - m3	568	tonne
Stone Requirement - tonne		

PROJECT REF:	23D047
LOCATION:	Ballymakenny, Louth County
DATE:	4.12 .23

SYSTEM PARAMETERS

Required Total Storage	65
Stormtech chamber model	MC4500
Filtration Permeable Geo or Impermeable Geo	Filter geo
Number of Isolator Rows (IR)	1

SITE PARAMETERS

Stone Porosity	40%	
Excavation Batter Angle (degrees)	60	
Stone Above Chambers	0.3	m
Stone Below Chambers	0.23	0.30
In-between Row Spacing	0.30	0.23
Additional Storage outside Excavation. E.g manholes, Header Pipe	0.23	

Additional Storage outside Excavation. E.g manholes, Header Pipe
HEADER PIPE

Is Header pipe required within excavation	No
Orientation of Header Pipe	Parrallel to IR
Diameter of Header Pipe	0.225
Length of Header Pipe	0

CHAMBER SYSTEM DIMENSIONS

Number of Rows
Number of units per Row
System Installed Storage Depth (effective storage depth)
Tank overall installed Width at base
Tank overall installed Length at Base
Total Effective System Storage

STORMTECH SYSTEM DETAIL

StormTech Chamber Model	MC4500	
Unit Width	2.54	m
Unit Length	1.23	m
Unit Height	1.525	m
Min Cover Over System	0.3	m
Max Cover Over Chamber	2.1	m
Chamber Internal Storage Vol.	3.01	$\mathrm{~m}^{3}$
Header Pipe Internal Storage Vol in Excavation	$0.0 \mathrm{~m}^{3}$	

Volume of Dig for System	122	$\mathrm{~m}^{3}$
Width at base	10.00	m
Width at top	12.37	m
Length at base	4.00	m
Length at top	6.37	m
Depth Of System	2.06	m
Area of Dig at Base of System	40	$\mathrm{~m}^{2}$
Area of Dig at Top of System	79	$\mathrm{~m}^{2}$
Void Ratio	53%	
Stone Requirement - m3	95	$\mathrm{~m}^{3}$
Stone Requirement - tonne	156	tonne

Appendix E - Swept Path Analysis

(See accompanying drawings listed below)

Appendix F - Site Investigation Report

Client:	Louth County Council
Engineer:	Doherty Finegan Kelly
Contractor:	Site Investigations Ltd

Ballymakenny West,
 Drogheda, Co. Louth
 Site Investigation

Prepared by:

Stephen Letch

Issue Date:	$01 / 12 / 2023$
Status	Final
Revision	0

Contents:

Page No.

1. Introduction 1
2. Site Location 1
3. Fieldwork 1
4. Laboratory Testing 4
5. Ground Conditions 4
6. Recommendations and Conclusions 5

Appendices:

1. Cable Percussive Boreholes Logs
2. Trial Pit and Dynamic Probe Logs and Photographs
3. California Bearing Ratio Test Results
4. Soakaway Test Results
5. Slit Trench Logs
6. Groundwater Monitoring
7. Geotechnical Laboratory Test Results
8. Environmental Laboratory Test Results
9. Waste Classification Report
10. Survey Data

1. Introduction

On the instructions of Doherty Finegan Kelly, Site Investigations Ltd (SIL) were appointed to complete a site investigation at Ballymakenny West, Drogheda, Co. Louth. The investigation was for a residential development on the site and was completed on behalf of the Client, Louth County Council. The investigation was completed in October 2023.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

Ballymakenny West is located to the north of Drogheda town centre. The map on the left shows the location of Drogheda in south Co. Louth and the second map shows the site location in the town.

3. Fieldwork

All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland Gl Specification and Related Document $2^{\text {nd }}$ Edition 2016 and Eurocode 7: Geotechnical Design. The fieldworks comprised the following:

- 2 No. cable percussive boreholes
- 10 No. trial pits with Dynamic Probes
- 7 No. California Bearing Ratio tests
- 2 No. soakaway tests
- 7 No. slit trenches
- Groundwater monitoring

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 2 No. locations using a Dando 150 rig and constructed 200 mm diameter boreholes. The boreholes terminated at similar depths of 8.70 mbgl and 7.80 mbgl respectively after an hour and a half chiselling was completed and no further progress was made. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00 m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone $\left(60^{\circ}\right)(C P T)$ instead of the split spoon and this was used throughout the testing. The test is completed over 450 mm and the cone is driven 150 mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300 mm and the blows recorded to report the N -Value. The report shows the $\mathrm{N}-$ Value with the 75 mm incremental blows listed in brackets (e.g., BH 01 at 1.00 mbgl where $\mathrm{N}=5-(1,1 / 1,1,2,1))$. Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 8.70 mbgl where $\mathrm{N}=50$-(25 for $5 \mathrm{~mm} / 50$ for 5 mm$)$).

At BH01, a groundwater standpipe was installed in the borehole to allow for long term monitoring of the water table. This consists of a slotted pipe with a gravel surround response zone to allow for the water the equalise in the standpipe.

The cable percussive borehole logs are presented in Appendix 1.

3.2. Trial Pits with Dynamic Probes

10 No. trial pits were excavated using a tracked excavator. The strata were logged and photographed by SIL geotechnical engineer and groundwater ingresses and pit wall stability was also recorded. Representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing.

Adjacent to the trial pits, dynamic probes were completed using a track mounted Competitor 130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method
comprising a 50 kg weight, 500 mm drop height and a 50 mm diameter $\left(90^{\circ}\right)$ cone. The number of blows required to drive the cone each 100 mm increment into the sub soil is recorded in accordance with the standards. The dynamic probe provides no information regarding soil type or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most relevant to Irish soil conditions and within this paper the following equations were included:

Granular Soils: DPH N $100 \times 2.5=$ SPT N value
Cohesive Soils: $\mathrm{C}_{\mathrm{u}}=15 \times$ DPH N $100+30 \mathrm{kN} / \mathrm{m}^{2}$

These equations present a relationship between the probe N_{100} value and the SPT N value for granular soils and the undrained shear strength of cohesive soils.

The trial pit and dynamic probe logs and photographs are presented in Appendix 2

3.3. California Bearing Ratio tests

At 7 No. trial pits, undisturbed cylindrical mould samples were taken to complete a California Bearing Ratio test in the laboratory. The result facilitates the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'.

The CBR test results are presented in Appendix 3.

3.4. Soakaway Tests

Adjacent to TP05 and TP10, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test results are presented in Appendix 4.

3.5. Slit Trenches

Slit trenching was completed at 7 No. locations and was completed by hand digging with machine assistance. 5 No. trenches were completed in the soil bund to the east of the site and ST06 and ST07 were completed in the main part of the site.

The slit trench logs with photographs are presented in Appendix 5.

3.6. Groundwater Monitoring

Following the completion of the fieldworks, a groundwater measurement was completed. The measurement was completed using a dip tape with a sensor at the end, which was lowered into the standpipe and set off a buzzer when the groundwater was encountered.

The groundwater reading is presented in Appendix 6.

3.7. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 10.

4. Laboratory Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 5 No. Moisture contents
- 5 No. Atterberg limits
- 5 No. Particle size gradings with 3 No. hydrometers
- 5 No. pH and sulphate content

Environmental testing was completed by ALS Environmental Ltd. and consists of the following:

- 4 No. Suite I analysis

The geotechnical laboratory test results are presented in Appendix 7 with the environmental tests reported in Appendix 8 and a Waste Classification Report in Appendix 9.

5. Ground Conditions

5.1. Overburden

The natural ground conditions are dominated by brown slightly sandy slightly gravelly silty CLAY with cobble and boulder content increasing with depth. TP01 and TP07 to the west of the site recorded thin bands of silty sandy GRAVEL at 1.30 mbgl and 1.50 mbgl and were 1.00 m and 0.70 m thick.

BH01 recorded a low SPT N -value of 5 at 1.00 mbgl and then 27 at 2.00 mbgl and 30 or greater from 3.00 mbgl and below. BH02 recorded a refusal on a boulder at 1.00 mbgl , then 17,19 and 27 at $2.00 \mathrm{mbgl}, 3.00 \mathrm{mbgl}$ and 4.00 mbgl before 35 or greater values were recorded.

5.2. Groundwater

No groundwater was recorded in the boreholes during drilling but was recorded at 0.80 mbgl in TP06 and 2.20 mbgl in TP01 and TP07. The ingresses at TP06 and TP07 were recorded as slow ingresses whilst TP01 was recorded as a rapid ingress.

6. Recommendations and Conclusions

Please note the following caveats:
The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50 mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

BH01 encountered soft brown slightly sandy slightly gravelly silty CLAY at 1.00 mbg with a SPT N -value of 5 . Using a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices, the SPT N-value can be used to calculate the undrained shear strength. With the low plasticity indexes recorded in the laboratory for the soils, this correlation is $\mathrm{C}_{u}=6 \mathrm{~N}$. Therefore, using the lower value of 5 , this indicates that the undrained shear strength of the CLAY is $30 \mathrm{kN} / \mathrm{m}^{2}$. This can be used to calculate the ultimate bearing capacity, and this has
been calculated to be $171 \mathrm{kN} / \mathrm{m}^{2}$. Finally, a factor of safety is applied and with a factor of 3 , an allowable bearing capacity of $57 \mathrm{kN} / \mathrm{m}^{2}$ would be anticipated using the lowest SPT value.

The SPTs increase to 17 to 27 at 2.00 mbgl and this indicates an undrained shear strength of $102 \mathrm{kN} / \mathrm{m}^{2}$, ultimate bearing capacity of $556 \mathrm{kN} / \mathrm{m}^{2}$ and an allowable bearing capacity of $185 \mathrm{kN} / \mathrm{m}^{2}$.

For analysis of bearing capacities from the dynamic probes, the N_{100} values are used as follows in cohesive soils. The undrained shear strength $\left(\mathrm{C}_{u}\right)$ is calculated using the N_{100} value as per the equation in Section 3.3. This can then be used in calculations to work out the ultimate bearing capacity (ULS) and when a factor of safety of 3 is applied, the allowable bearing capacity (ABC) can be provided. The table below shows the allowable bearing capacities for N_{100} values 1 to 10 at 1.00 mbgl .

N $_{100}$ Value	Cohesive Soils		
	C_{u}	ULS	ABC
1	45	248	83
2	60	330	110
3	75	400	135
4	90	480	160
5	105	555	185
6	120	630	210
7	135	705	235
8	150	780	260
9	165	855	285
10	180	930	310

All capacities shown are in $\mathrm{kN} / \mathrm{m}^{2}$.

The probes recorded N_{100} values of 2 or greater at 1.00 mbgl and this would indicate an allowable bearing capacity of $110 \mathrm{kN} / \mathrm{m}^{2}$, which is greater than the SPT N -values would indicate. It would be recommended that all founding strata to be inspected by a suitably qualified Engineer prior to pouring the foundations.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type (described above).
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of $19 \mathrm{kN} / \mathrm{m}^{3}$.
- All bearing capacity calculations allow for a settlement of 25 mm .
- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.

The trial pit walls generally remained stable during excavation; however, TP01, TP08 and TP09 recorded minor instability so all excavations should be checked immediately and battered back accordingly. Regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:
There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall and possible nearby construction sites.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was only recorded in three trial pits at 0.80 mbgl and 2.20 mbgl .

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00 mbgl) into excavations of the CLAY will be slow to medium. If granular soils are
encountered in shallow excavations, then the possibility of water ingressing into an excavation increase.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Pavement Design

The CBR test results in Appendix 3 indicate a CBR value of 10.8% to 13.9\%.

The CBR samples tests were recovered at 0.50 mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.4. Soakaway Tests

The soakaway tests failed as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24 hrs , and extrapolation indicates this condition would not be satisfied. The test was terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e., well compacted clay soils.

6.5. Contamination

Environmental testing was carried out on four samples from the investigation and the results are shown in Appendix 8. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline ${ }^{\text {TM }}$ software shows that the material tested can be classified as non-hazardous material. The samples recorded toluene above the limits of detection but this is not in liquid phase and therefore, HP3 can be discounted.

Following this analysis of the solid test results, the leachate disposal suite results indicate that the soils tested would generally be able to be treated as Inert Waste.

Four samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be
stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

6.6. Aggressive Ground Conditions

The chemical test results in Appendix 7 indicate a general pH value between 7.63 and 8.07, which is close to neutral and below the level of 9 , therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was $127 \mathrm{mg} / \mathrm{l}$ as SO_{3}. The BRE Special Digest 1:2005 - 'Concrete in Aggressive Ground' guidelines require SO_{4} values and after conversion ($\mathrm{SO}_{4}=\mathrm{SO}_{3} \times 1.2$), the maximum value of $152 \mathrm{mg} / l$ shows Class 1 conditions and no special precautions are required.

6.7. Radon Gas

The Environmental Protection Agency (EPA) has updated the Radon gas exposure map and this is available to view on the EPA website. This shows the possible exposure to radon gas with the bedrock geology, subsoil geology, soil permeability and aquifer type analysed to produce the map. Although the map is based on residential homes, the map below shows that part of the site falls within the medium level of 1 in 10 homes have a possibility of high radon exposure. Measures should be taken in the form of radon protection barriers to protect from radon exposure in the new structure.

EPA map identifying possible Radon exposure.
https://gis.epa.ie/EPAMaps/Radon?\&lid=EPA:RadonRiskMapoflreland

Appendix 1

Cable Percussive Borehole Logs

Appendix 2

Trial Pit and Dynamic Probe Logs and Photographs

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

TP06 Sidewall

TP06 Spoil

TP07 Sidewall

TP07 Spoil

TP08 Sidewall

TP08 Spoil

TP09 Sidewall

TP09 Spoil

TP10 Sidewall

TP10 Spoil

Appendix 3

California Bearing Ratio Test Results

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Louth County Council	
Site	Ballymakenny West, Drogheda	
S.I. File No	$6182 / 23$	
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie	
Report Date	1st November 2023	

CBR No	Depth (mBGL)	Sample No	Lab Ref	Sample Type	Moisture Content $(\%)$	CBR Value (\%)	
TP01	0.50	MK40	$23 / 1835$	B	9.5	13.1	
TP03	0.50	MK41	$23 / 1836$	B	14.6	13.7	
TP04	0.50	MK42	$23 / 1837$	B	10.0	13.9	
TP05	0.50	MK43	$23 / 1838$	B	8.8	12.7	
TP06	0.50	MK44	$23 / 1839$	B	11.5	13.8	
TP07	0.50	MK45	$23 / 1840$	B	9.7	12.8	
TP09	0.50	MK46	$23 / 1841$	B	14.4	10.8	

Appendix 4

Soakaway Test Results

Appendix 5

Slit Trench Logs

781								O17 SNOILHOIISJNNI 3IIS				
	ERezof	Eporiot it										
					W002	woot			686850ut			
					：पпda	：4PP：M	：ч¢6иә		：6ulut	（6upsea	${ }^{\text {Pen }}$	
							suo！suau	U！0 4	呅」			
					Stuwbey	unp pue	，duos	5	wes 12.15 ：anno	\＄090 3own		
					ssuwey	nued duos		Suplis fue	simala ：onno	Oes jorw		
							suol？！pu	OO pu	nodo			
							pamauno	Ooug sonn	as on			
					มขшบб！	：पdda	：วueps	：411］n｜	： n 0100		：0N	
sपdex50704d					Sวગ！＾ıวS							
U0！łJこS SSOIJ												
$\mathrm{IO} \perp \mathrm{~S}$												

2819								OLTSNOILYOIISJNNI 3IIS									
(rawn	Ezazortiz	Efozithz															
					W09\%	woot	woor	(648			${ }_{\text {Put }}$						
					:unda	: 4 P1.	:ч¢биә7	-1907	: Buluon	: Bupse	\%						
					suo!suam!a पगuәл।												
											wo9t						
					woco												
					suolu!puoj punods												
											:on						
					Sotanes												
$\varepsilon 0 \perp S$																	

								OLT SNOILHOILSJNNI 3IIS				（10					
\％egno	¢zozoter	cil															
					worz	w00			Styrioul								
					dad	：بр：＇，	：4\％6иว	$\frac{6628}{\text { ：1207 }}$	（6йию								
					suo！suaw！a पวuә」」												
					．apmoq pue evaome												
						Su017！puos punodo											
						papayunoul seonas on											
								รコJ！ñas									
$G O \perp S$																	

2819			OL \ddagger \#y HLdag					OL7 SNOILHOIISJNNI 3IIS														
\%	Ember	Ezozotite																				
					wort	woot	wos's	9882	19266942	toc L8800	Pus											
					:पıda	:पрР:M	:प¢6иว		: 6 ¢uruo	6ufse	\%uod											
					suo!suam!a чวบว入」																	
					suolu!puoj punodo																	
					sวग!^ıวS																	
uo!ljos ssołכ																						
$\angle O \perp S$																						

Appendix 6

Groundwater Monitoring

Groundwater Readings

BH No:	Depth of standpipe	Depth to water - mbgl	Depth to water - mOD
$10 / 11 / 2023$			
BH01	7.50	1.05	29.59

Appendix 7

Geotechnical Laboratory Test Results

Classification Tests

In accordance with BS 1377: Part 2

Client	Louth County Council
Site	Ballymakenny West, Drogheda
S.I. File No	6182 / 23
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01)6108768 Email:info@siteinvestigations.ie
Report Date	7th November 2023

Hole ID	Depth	Sample No	$\begin{gathered} \hline \text { Lab Ref } \\ \text { No. } \end{gathered}$	Sample Type	Natural Moisture Content \%	Liquid Limit \%	Plastic Limit \%	Plastic Index \%	Max. Density $\mathrm{Mg} / \mathrm{m}^{2}$	Bulk Density $\mathrm{Mg} / \mathrm{m}^{3}$		Comments	$\begin{aligned} & \text { Remarks C=Clay; M=Silt } \\ & \text { Plasticity: L=Low; } \\ & \text { I=Intermediate; H=High; } \\ & \text { V=Very High; E=Extremely } \\ & \text { High } \end{aligned}$
BH01	1.00	DC01	23/1830	B	11.1	34	19	15			59.9		CL
TP02	1.00	MK24	23/1831	B	13.3	33	18	15			63.2		CL
TP05	1.00	MK12	23/1832	B	26.7	32	18	14			55.8		CL
TP07	1.00	MK03	23/1833	B	11.5	34	19	15			58.4		CL
TP10	1.00	MK41	23/1834	B	11.1	34	18	16			55.4		CL

BS Sieve size, mm	Percent passing	Hydrometer analysis	
		\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
$\mathbf{7 5}$	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$\mathbf{5 0}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	96.9		
$\mathbf{2 0}$	95.2		
$\mathbf{1 4}$	90.7		
$\mathbf{1 0}$	84.6		
$\mathbf{6 . 3}$	78.9		
$\mathbf{5 . 0}$	77.3		
$\mathbf{2 . 3 6}$	71.3		
$\mathbf{2 . 0 0}$	70		
$\mathbf{1 . 1 8}$	67.8		
$\mathbf{0 . 6 0 0}$	62.2		
$\mathbf{0 . 4 2 5}$	59.9		
$\mathbf{0 . 3 0 0}$	57.5		
$\mathbf{0 . 2 1 2}$	55.8		
$\mathbf{0 . 1 5 0}$	53.6		
$\mathbf{0 . 0 6 3}$	48		

Engineer :	Louth County Council	Lab. No :	23/1830	Hole ID :	BH 01
Project :	Ballymakenny West, Drogheda	Sample No :	DC01	Depth, m :	1.00

[^0]\mp@subsup{}{}{TM}\mathrm{ classifies waste as either hazardous or non-hazardous based on its chemical composition, related
legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is
not assessed). It is the responsibility of the classifier named below to:
a) understand the origin of the waste
b) select the correct List of Waste code(s)
c) confirm that the list of determinands, results and sampling plan are fit for purpose
d) select and justify the chosen metal species (Appendix B)
e) correctly apply moisture correction and other available corrections
f) add the meta data for their user-defined substances (Appendix A)
g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

```
To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.


To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

\section*{Job name}

6182

\section*{Description/Comments}

Client: Louth County Council
Engineer: Doherty Finegan Kelly

\section*{Project}

Ballymakenny West

Site
Drogheda, Co. Louth

Classified by
\begin{tabular}{|c|c|c|c|}
\hline Name: & Company: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{HazWasteOnline \({ }^{\text {TM }}\) provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.}} \\
\hline Stephen Letch & Site Investigations Ltd & & \\
\hline Date: & The Grange & HazWasteOnline \({ }^{\text {TM }}\) Certification: & CERTIFIED \\
\hline 09 Nov 2023 13:56 GMT & 12th Lock Road & & CERTIFD \\
\hline Telephone: & Lucan & Course & Date \\
\hline 00353868179449 & K78 F598 & Hazardous Waste Classification & 09 Oct 2019 \\
\hline & & Most recent 3 year Refresher & 04 Oct 2022 \\
\hline
\end{tabular}

Next 3 year Refresher due by Oct 2025

\section*{Purpose of classification}

2 - Material Characterisation

\section*{Address of the waste}

Ballymakenny West, Drogheda, Co. Louth
Post Code N/A

SIC for the process giving rise to the waste
43130 Test drilling and boring
Description of industry/producer giving rise to the waste
Site Investigation
Description of the specific process, sub-process and/or activity that created the waste
Soils recovered for environmental testing

\section*{Description of the waste}

Natural soils

Job summary
\begin{tabular}{rlrlrrr}
\hline \# Sample name & Depth \([\mathrm{m}]\) & Classification Result & Hazard properties & \multicolumn{2}{c}{ WAC Results } \\
\cline { 3 - 6 } & & 0.50 & Non Hazardous & Inert & Non Haz \\
\hline 1 & ST03-0.50 & Page \\
2 & TP01-0.50 & 0.50 & Non Hazardous & Pass & Pass \\
3 & TP10-0.50 & 0.50 & Non Hazardous & Pass & Pass \\
4 & TP07-0.50 & 0.50 & Non Hazardous & Pass & Pass \\
\hline
\end{tabular}

\section*{Related documents}
\begin{tabular}{lll}
\hline\(\#\) & Name & Description \\
\hline 1 & \(231027-116\). hwol & ALS Hawarden .hwol file used to populate the Job \\
2 & Rilta Suite NEW & waste stream template used to create this Job \\
\hline
\end{tabular}

\section*{WAC results}

WAC Settings: samples in this Job constitute a single population.
WAC limits used to evaluate the samples in this Job: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

\section*{Report}

Created by: Stephen Letch
Created date: 09 Nov 2023 13:56 GMT
\begin{tabular}{lr}
\hline Appendices & Page \\
\hline Appendix A: Classifier defined and non EU CLP determinands & 21 \\
Appendix B: Rationale for selection of metal species & 22
\end{tabular}
Appendix C: Version ..... 23

\section*{PAH Double Ratio Plots}

\section*{Disclaimer}

The domains, oval areas and the plotted points are indicators only and must be combined with other lines of evidence to form conclusions. Samples marked with an empty circle are not plotted as they fall outside of the graph's boundaries.

\section*{Credits}

The domains and the horizontal and vertical lines are derived from Yunker et al. 2002 (Organic Geochemistry 33, 489-515)


\section*{Credits for the oval areas and labels}

HazWasteOnline, 2023; Jones Environmental Forensics, 2014; Costa \& Sauer, 2005


ST03-0.50
Credits for the oval areas and labels
HazWasteOnline, 2023; Costa \& Sauer, 2005


ST03-0.50

\footnotetext{
Credits for the oval areas and labels
}

HazWasteOnline, 2023; Costa \& Sauer, 2005

HazWasteOnline \({ }^{\text {m }}\)
Report created by Stephen Letch on 09 Nov 2023

\section*{Classification of sample: ST03-0.50}


\section*{Sample details}
\begin{tabular}{lll}
\hline Sample name: & LoW Code: & \\
ST03-0.50 & Chapter: & 17: Construction and Demolition Wastes (including excavated soil \\
Sample Depth: & & from contaminated sites) \\
\(\mathbf{0 . 5 0 \mathrm { m }}\) & Entry: & 170504 (Soil and stones other than those mentioned in 1705 \\
Moisture content: & & \(03)\)
\end{tabular}

19\%
(wet weight correction)

\section*{Hazard properties}

None identified

\section*{Determinands}

Moisture content: 19\% Wet Weight Moisture Correction applied (MC)


HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023


HazWasteOnline \({ }^{\text {mi }}\)

Key
User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
-
Determinand defined or amended by HazWasteOnline (see Appendix A)
\(\$\)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<LOD
Below limit of detection
CLP: Note 1
Only the metal concentration has been used for classification

\section*{Supplementary Hazardous Property Information}

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below \(60^{\circ} \mathrm{C}\) or waste gas oil, diesel and light heating oils having a flash point \(>55^{\circ} \mathrm{C}\) and \(<=75^{\circ} \mathrm{C} "\)
Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:
Flam. Liq. 2; H225 "Highly flammable liquid and vapour."
Because of determinand:
toluene: (conc.: 3.85e-07\%)

HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023

WAC results for sample: ST03-0.50
WAC Settings: samples in this Job constitute a single population.
WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.
The sample PASSES the Inert (Inert waste landfill) criteria.
The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.
WAC Determinands
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Solid Waste Analysis} & \multicolumn{2}{|l|}{Landfill Waste Acceptance Criteria Limits} \\
\hline \# & Determinand & & User entered data & Inert waste landfill & Non hazardous waste landfill \\
\hline 1 & TOC (total organic carbon) & \% & 2.66 & 3 & 5 \\
\hline 2 & LOI (loss on ignition) & \% & 7.01 & - & - \\
\hline 3 & BTEX (benzene, toluene, ethylbenzene and xylenes) & mg/kg & 0.0047 & 6 & - \\
\hline 4 & PCBs (polychlorinated biphenyls, 7 congeners) & mg/kg & <0.021 & 1 & - \\
\hline 5 & Mineral oil (C10 to C40) & mg/kg & 6.46 & 500 & - \\
\hline 6 & PAHs (polycyclic aromatic hydrocarbons) & mg/kg & <10 & 100 & - \\
\hline 7 & pH & pH & 8.09 & - & >6 \\
\hline 8 & ANC (acid neutralisation capacity) & \(\mathrm{mol} / \mathrm{kg}\) & & - & - \\
\hline \multicolumn{4}{|c|}{Eluate Analysis 10:1} & \multicolumn{2}{|l|}{} \\
\hline 9 & arsenic & mg/kg & 0.0119 & 0.5 & 2 \\
\hline 10 & barium & mg/kg & 0.0688 & 20 & 100 \\
\hline 11 & cadmium & mg/kg & <0.0008 & 0.04 & 1 \\
\hline 12 & chromium & mg/kg & <0.01 & 0.5 & 10 \\
\hline 13 & copper & mg/kg & 0.0526 & 2 & 50 \\
\hline 14 & mercury & mg/kg & 0.0001 & 0.01 & 0.2 \\
\hline 15 & molybdenum & mg/kg & <0.03 & 0.5 & 10 \\
\hline 16 & nickel & mg/kg & 0.0102 & 0.4 & 10 \\
\hline 17 & lead & mg/kg & 0.0037 & 0.5 & 10 \\
\hline 18 & antimony & mg/kg & <0.01 & 0.06 & 0.7 \\
\hline 19 & selenium & mg/kg & <0.01 & 0.1 & 0.5 \\
\hline 20 & zinc & mg/kg & <0.01 & 4 & 50 \\
\hline 21 & chloride & mg/kg & <20 & 800 & 15,000 \\
\hline 22 & fluoride & mg/kg & 9.94 & 10 & 150 \\
\hline 23 & sulphate & mg/kg & 23 & 1,000 & 20,000 \\
\hline 24 & phenol index & mg/kg & <0.16 & 1 & - \\
\hline 25 & DOC (dissolved organic carbon) & \(\mathrm{mg} / \mathrm{kg}\) & 79 & 500 & 800 \\
\hline 26 & TDS (total dissolved solids) & mg/kg & 1030 & 4,000 & 60,000 \\
\hline
\end{tabular}

Key

HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023

\section*{Classification of sample: TP01-0.50}


\section*{Sample details}
\begin{tabular}{lll} 
Sample name: & LoW Code: & \\
TP01-0.50 & Chapter: & 17: Construction and Demolition Wastes (including excavated soil \\
Sample Depth: & & from contaminated sites) \\
\(\mathbf{0 . 5 0} \mathbf{m}\) & Entry: & 170504 (Soil and stones other than those mentioned in 1705 \\
Moisture content: & & \(03)\)
\end{tabular}

17\%
(wet weight correction)
from contaminated sites)
03)

\section*{Hazard properties}

None identified

\section*{Determinands}

Moisture content: 17\% Wet Weight Moisture Correction applied (MC)


HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023


HazWasteOnline
Report created by Stephen Letch on 09 Nov 2023

Key

\section*{User supplied data}

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

CLP: Note 1
Below limit of detection
Only the metal concentration has been used for classification

HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023

WAC results for sample: TP01-0.50
WAC Settings: samples in this Job constitute a single population.
WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.
The sample PASSES the Inert (Inert waste landfill) criteria.
The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.
WAC Determinands
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Solid Waste Analysis} & \multicolumn{2}{|l|}{Landfill Waste Acceptance Criteria Limits} \\
\hline \# & \multicolumn{2}{|l|}{Determinand} & User entered data & Inert waste landfill & Non hazardous waste landfill \\
\hline 1 & TOC (total organic carbon) & \% & 0.294 & 3 & 5 \\
\hline 2 & LOI (loss on ignition) & \% & 3.7 & - & - \\
\hline 3 & BTEX (benzene, toluene, ethylbenzene and xylenes) & mg/kg & \(<0.007\) & 6 & - \\
\hline 4 & PCBs (polychlorinated biphenyls, 7 congeners) & mg/kg & <0.021 & 1 & - \\
\hline 5 & Mineral oil (C10 to C40) & mg/kg & <5 & 500 & - \\
\hline 6 & PAHs (polycyclic aromatic hydrocarbons) & mg/kg & <10 & 100 & - \\
\hline 7 & pH & pH & 7.67 & - & >6 \\
\hline 8 & ANC (acid neutralisation capacity) & mol/kg & & - & - \\
\hline \multicolumn{4}{|c|}{Eluate Analysis 10:1} & \multicolumn{2}{|l|}{} \\
\hline 9 & arsenic & mg/kg & <0.005 & 0.5 & 2 \\
\hline 10 & barium & mg/kg & 0.0148 & 20 & 100 \\
\hline 11 & cadmium & mg/kg & <0.0008 & 0.04 & 1 \\
\hline 12 & chromium & mg/kg & <0.01 & 0.5 & 10 \\
\hline 13 & copper & mg/kg & 0.0065 & 2 & 50 \\
\hline 14 & mercury & mg/kg & <0.0001 & 0.01 & 0.2 \\
\hline 15 & molybdenum & mg/kg & <0.03 & 0.5 & 10 \\
\hline 16 & nickel & mg/kg & <0.004 & 0.4 & 10 \\
\hline 17 & lead & mg/kg & 0.0026 & 0.5 & 10 \\
\hline 18 & antimony & mg/kg & <0.01 & 0.06 & 0.7 \\
\hline 19 & selenium & mg/kg & <0.01 & 0.1 & 0.5 \\
\hline 20 & zinc & mg/kg & <0.01 & 4 & 50 \\
\hline 21 & chloride & mg/kg & <20 & 800 & 15,000 \\
\hline 22 & fluoride & mg/kg & <5 & 10 & 150 \\
\hline 23 & sulphate & mg/kg & 27 & 1,000 & 20,000 \\
\hline 24 & phenol index & mg/kg & <0.16 & 1 & - \\
\hline 25 & DOC (dissolved organic carbon) & mg/kg & 48.6 & 500 & 800 \\
\hline 26 & TDS (total dissolved solids) & mg/kg & 212 & 4,000 & 60,000 \\
\hline
\end{tabular}

Key

HazWasteOnline \({ }^{\text {m }}\)
Report created by Stephen Letch on 09 Nov 2023

\section*{Classification of sample: TP10-0.50}


\section*{Sample details}
\begin{tabular}{lll} 
Sample name: & LoW Code: & \\
TP10-0.50 & Chapter: & 17: Construction and Demolition Wastes (including excavated soil \\
Sample Depth: & & from contaminated sites) \\
\(\mathbf{0 . 5 0 \mathrm { m }}\) & Entry: & 170504 (Soil and stones other than those mentioned in 1705 \\
Moisture content: & & \(03)\)
\end{tabular}

10\%
(wet weight correction)

\section*{Hazard properties}

None identified

\section*{Determinands}

Moisture content: 10\% Wet Weight Moisture Correction applied (MC)


HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023


HazWasteOnline \({ }^{\text {mi }}\)

Key
User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
-
Determinand defined or amended by HazWasteOnline (see Appendix A)
\(\$\)
Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<LOD
Below limit of detection
CLP: Note 1
Only the metal concentration has been used for classification

\section*{Supplementary Hazardous Property Information}

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below \(60^{\circ} \mathrm{C}\) or waste gas oil, diesel and light heating oils having a flash point \(>55^{\circ} \mathrm{C}\) and \(<=75^{\circ} \mathrm{C} "\)
Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:
Flam. Liq. 2; H225 "Highly flammable liquid and vapour."
Because of determinand:
toluene: (conc.: 1.16e-07\%)

HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023

WAC results for sample: TP10-0.50
WAC Settings: samples in this Job constitute a single population.
WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.
The sample PASSES the Inert (Inert waste landfill) criteria.
The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.
WAC Determinands
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Solid Waste Analysis} & \multicolumn{2}{|l|}{Landfill Waste Acceptance Criteria Limits} \\
\hline \# & \multicolumn{2}{|l|}{Determinand} & User entered data & Inert waste landfill & Non hazardous waste landfill \\
\hline 1 & TOC (total organic carbon) & \% & 0.269 & 3 & 5 \\
\hline 2 & LOI (loss on ignition) & \% & 2.26 & - & - \\
\hline 3 & BTEX (benzene, toluene, ethylbenzene and xylenes) & mg/kg & 0.0012 & 6 & - \\
\hline 4 & PCBs (polychlorinated biphenyls, 7 congeners) & mg/kg & <0.021 & 1 & - \\
\hline 5 & Mineral oil (C10 to C40) & mg/kg & <5 & 500 & - \\
\hline 6 & PAHs (polycyclic aromatic hydrocarbons) & mg/kg & <10 & 100 & - \\
\hline 7 & pH & pH & 8.69 & - & >6 \\
\hline 8 & ANC (acid neutralisation capacity) & mol/kg & & - & - \\
\hline \multicolumn{4}{|c|}{Eluate Analysis 10:1} & \multicolumn{2}{|l|}{} \\
\hline 9 & arsenic & mg/kg & <0.005 & 0.5 & 2 \\
\hline 10 & barium & mg/kg & 0.0886 & 20 & 100 \\
\hline 11 & cadmium & mg/kg & <0.0008 & 0.04 & 1 \\
\hline 12 & chromium & mg/kg & <0.01 & 0.5 & 10 \\
\hline 13 & copper & mg/kg & 0.007 & 2 & 50 \\
\hline 14 & mercury & mg/kg & <0.0001 & 0.01 & 0.2 \\
\hline 15 & molybdenum & mg/kg & <0.03 & 0.5 & 10 \\
\hline 16 & nickel & mg/kg & 0.0044 & 0.4 & 10 \\
\hline 17 & lead & mg/kg & <0.002 & 0.5 & 10 \\
\hline 18 & antimony & mg/kg & <0.01 & 0.06 & 0.7 \\
\hline 19 & selenium & mg/kg & <0.01 & 0.1 & 0.5 \\
\hline 20 & zinc & mg/kg & <0.01 & 4 & 50 \\
\hline 21 & chloride & mg/kg & <20 & 800 & 15,000 \\
\hline 22 & fluoride & mg/kg & 5.35 & 10 & 150 \\
\hline 23 & sulphate & mg/kg & <20 & 1,000 & 20,000 \\
\hline 24 & phenol index & mg/kg & <0.16 & 1 & - \\
\hline 25 & DOC (dissolved organic carbon) & mg/kg & <30 & 500 & 800 \\
\hline 26 & TDS (total dissolved solids) & mg/kg & 688 & 4,000 & 60,000 \\
\hline
\end{tabular}

Key

HazWasteOnline \({ }^{\text {m }}\)
Report created by Stephen Letch on 09 Nov 2023

\section*{Classification of sample: TP07-0.50}


\section*{Sample details}
\begin{tabular}{lll} 
Sample name: & LoW Code: & \\
TP07-0.50 & Chapter: & 17: Construction and Demolition Wastes (including excavated soil \\
Sample Depth: & & from contaminated sites) \\
\(\mathbf{0 . 5 0} \mathbf{m}\) & Entry: & 170504 (Soil and stones other than those mentioned in 1705 \\
Moisture content: & & \(03)\)
\end{tabular}

15\%
(wet weight correction)

\section*{Hazard properties}

None identified

\section*{Determinands}

Moisture content: 15\% Wet Weight Moisture Correction applied (MC)


HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023


HazWasteOnline
Report created by Stephen Letch on 09 Nov 2023

Key

\section*{User supplied data}

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

CLP: Note 1
Below limit of detection
Only the metal concentration has been used for classification

HazWasteOnline \({ }^{\text {m" }}\)
Report created by Stephen Letch on 09 Nov 2023

WAC results for sample: TP07-0.50
WAC Settings: samples in this Job constitute a single population.
WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.
The sample PASSES the Inert (Inert waste landfill) criteria.
The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.
WAC Determinands
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Solid Waste Analysis} & \multicolumn{2}{|l|}{Landfill Waste Acceptance Criteria Limits} \\
\hline \# & \multicolumn{2}{|l|}{Determinand} & User entered data & Inert waste landfill & Non hazardous waste landfill \\
\hline 1 & TOC (total organic carbon) & \% & 0.528 & 3 & 5 \\
\hline 2 & LOI (loss on ignition) & \% & 3.89 & - & - \\
\hline 3 & BTEX (benzene, toluene, ethylbenzene and xylenes) & mg/kg & \(<0.007\) & 6 & - \\
\hline 4 & PCBs (polychlorinated biphenyls, 7 congeners) & mg/kg & <0.021 & 1 & - \\
\hline 5 & Mineral oil (C10 to C40) & mg/kg & <5 & 500 & - \\
\hline 6 & PAHs (polycyclic aromatic hydrocarbons) & mg/kg & <10 & 100 & - \\
\hline 7 & pH & pH & 8.31 & - & >6 \\
\hline 8 & ANC (acid neutralisation capacity) & mol/kg & & - & - \\
\hline \multicolumn{4}{|c|}{Eluate Analysis 10:1} & \multicolumn{2}{|l|}{} \\
\hline 9 & arsenic & mg/kg & 0.0051 & 0.5 & 2 \\
\hline 10 & barium & mg/kg & 0.271 & 20 & 100 \\
\hline 11 & cadmium & mg/kg & <0.0008 & 0.04 & 1 \\
\hline 12 & chromium & mg/kg & 0.0121 & 0.5 & 10 \\
\hline 13 & copper & mg/kg & 0.0198 & 2 & 50 \\
\hline 14 & mercury & mg/kg & <0.0001 & 0.01 & 0.2 \\
\hline 15 & molybdenum & mg/kg & <0.03 & 0.5 & 10 \\
\hline 16 & nickel & mg/kg & 0.0116 & 0.4 & 10 \\
\hline 17 & lead & mg/kg & 0.0034 & 0.5 & 10 \\
\hline 18 & antimony & mg/kg & <0.01 & 0.06 & 0.7 \\
\hline 19 & selenium & mg/kg & <0.01 & 0.1 & 0.5 \\
\hline 20 & zinc & mg/kg & 0.0519 & 4 & 50 \\
\hline 21 & chloride & mg/kg & 26 & 800 & 15,000 \\
\hline 22 & fluoride & mg/kg & <5 & 10 & 150 \\
\hline 23 & sulphate & mg/kg & 26 & 1,000 & 20,000 \\
\hline 24 & phenol index & mg/kg & <0.16 & 1 & - \\
\hline 25 & DOC (dissolved organic carbon) & mg/kg & 65.3 & 500 & 800 \\
\hline 26 & TDS (total dissolved solids) & mg/kg & 332 & 4,000 & 60,000 \\
\hline
\end{tabular}

Key

\section*{Appendix A: Classifier defined and non EU CLP determinands}

\section*{TPH (C6 to C40) petroleum group (CAS Number: TPH)}

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013
Data source: WM3 1st Edition 2015
Data source date: 25 May 2015
Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411
\({ }^{\bullet}\) confirm TPH has NOT arisen from diesel or petrol
Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350 (HP 7) and Muta. 1B; H340 (HP 11)
Data source: WM3 1st Edition 2015
Data source date: 25 May 2015
Hazard Statements: None.
\({ }^{\bullet}\) barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)
EU CLP index number: 016-002-00-X
Description/Comments:
Additional Hazard Statement(s): EUH031 >= 0.8 \%
Reason for additional Hazards Statement(s):
14 Dec 2015 - EUH031 >= 0.8 \% hazard statement sourced from: WM3, Table C12.2
lead compounds with the exception of those specified elsewhere in this Annex (worst case)
EU CLP index number: 082-001-00-6
Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A
Additional Hazard Statement(s): Carc. 1A; H350
Reason for additional Hazards Statement(s):
03 Jun 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015
\({ }^{\bullet}\) chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)
Description/Comments: Data from C\&L Inventory Database
Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806
Data source date: 17 Jul 2015
Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319, STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410
\({ }^{\bullet}\) acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)
Description/Comments: Data from C\&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 17 Jul 2015
Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319, STOT SE 3; H335 , Skin Irrit. 2; H315
\({ }^{\bullet}\) acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)
Description/Comments: Data from C\&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 17 Jul 2015
Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2; H411
\({ }^{\bullet}\) fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)
Description/Comments: Data from C\&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 06 Aug 2015
Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410
phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)
Description/Comments: Data from C\&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 06 Aug 2015
Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400 , Aquatic Chronic 1; H410, Skin Irrit. 2; H315
\({ }^{\bullet}\) anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)
Description/Comments: Data from C\&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 17 Jul 2015
Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400 , Aquatic Chronic 1; H410
\({ }^{\bullet}\) fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)
Description/Comments: Data from C\&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 21 Aug 2015
Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410
\({ }^{\bullet}\) pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)
Description/Comments: Data from C\&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 21 Aug 2015
Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410
\({ }^{\bullet}\) indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)
Description/Comments: Data from C\&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 06 Aug 2015
Hazard Statements: Carc. 2; H351
\({ }^{\bullet}\) benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)
Description/Comments: Data from C\&L Inventory Database; SDS Sigma Aldrich 28/02/2015
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 23 Jul 2015
Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410
\({ }^{\bullet}\) polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)
EU CLP index number: 602-039-00-4
Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;
POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.
Additional Hazard Statement(s): Carc. 1A; H350
Reason for additional Hazards Statement(s):
29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012
\({ }^{\bullet}\) ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)
EU CLP index number: 601-023-00-4
Description/Comments:
Additional Hazard Statement(s): Carc. 2; H351
Reason for additional Hazards Statement(s):
03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000
\({ }^{\bullet}\) coronene (EC Number: 205-881-7, CAS Number: 191-07-1)
Description/Comments: Data from C\&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC - Group 3, not carcinogenic.
Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010\&HarmOnly=no?fc=true\&lang=en Data source date: 16 Jun 2014
Hazard Statements: STOT SE 2; H371
\({ }^{\bullet}\) pH (CAS Number: PH)
Description/Comments: Appendix C4
Data source: WM3 1st Edition 2015
Data source date: 25 May 2015
Hazard Statements: None.
Appendix B: Rationale for selection of metal species
antimony \{antimony trioxide\}
Worst case scenario.
arsenic \{arsenic pentoxide\}
Arsenic pentoxide used as most hazardous species.

HazWasteOnline \({ }^{\text {m }}\)
Report created by Stephen Letch on 09 Nov 2023
barium \{barium sulphide\}
Chromium VI at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present.
cadmium \{cadmium sulfate\}
Cadmium sulphate used as the most hazardous species.
copper \{dicopper oxide; copper (I) oxide\}
Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.
lead \{lead compounds with the exception of those specified elsewhere in this Annex (worst case)\}
Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present. mercury \{mercury dichloride\}
Worst case CLP species based on hazard statements/molecular weight
molybdenum \{molybdenum(VI) oxide\}
Worst case CLP species based on hazard statements/molecular weight.
nickel \{nickel sulfate\}
Chromium VI at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.
selenium \{selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex\}
Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

\section*{zinc \{zinc sulphate\}}

Chromium VI at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.
chromium in chromium(III) compounds \{chromium(III) oxide (worst case)\}
Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass
chromium in chromium(VI) compounds \{chromium(VI) oxide\}
Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

\section*{Appendix C: Version}

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021
HazWasteOnline Classification Engine Version: 2023.312.5802.10733 (08 Nov 2023)
HazWasteOnline Database: 2023.312.5802.10733 (08 Nov 2023)
This classification utilises the following guidance and legislation:
WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021
CLP Regulation - Regulation 1272/2008/EC of 16 December 2008
1st ATP - Regulation 790/2009/EC of 10 August 2009
2nd ATP - Regulation 286/2011/EC of 10 March 2011
3rd ATP - Regulation 618/2012/EU of 10 July 2012
4th ATP - Regulation 487/2013/EU of 8 May 2013
Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013
5th ATP - Regulation 944/2013/EU of 2 October 2013
6th ATP - Regulation 605/2014/EU of 5 June 2014
WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014
Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014
7th ATP - Regulation 2015/1221/EU of 24 July 2015
8th ATP - Regulation (EU) 2016/918 of 19 May 2016
9th ATP - Regulation (EU) 2016/1179 of 19 July 2016
10th ATP - Regulation (EU) 2017/776 of 4 May 2017
HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017
13th ATP - Regulation (EU) 2018/1480 of 4 October 2018
14th ATP - Regulation (EU) 2020/217 of 4 October 2019
15th ATP - Regulation (EU) 2020/1182 of 19 May 2020
The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)
Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020
The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:
2020 No. 1540 of 16th December 2020
17th ATP - Regulation (EU) 2021/849 of 11 March 2021
18th ATP - Regulation (EU) 2022/692 of 16 February 2022
19th ATP - Regulation (EU) 2023/1434 of 25 April 2023
20th ATP - Regulation (EU) 2023/1435 of 252 May 2023

\section*{Appendix 10 \\ Survey Data}

\section*{Survey Data}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Location} & \multicolumn{2}{|l|}{Irish Transverse Mercator} & \multirow[b]{2}{*}{Elevation} & \multicolumn{2}{|r|}{Irish National Grid} \\
\hline & Easting & Northing & & Easting & Northing \\
\hline \multicolumn{6}{|c|}{Cable Percussive Boreholes} \\
\hline BH01 & 709089.053 & 777033.284 & 30.64 & 309161.580 & 277016.243 \\
\hline BH02 & 708931.607 & 776968.084 & 28.85 & 309004.101 & 276951.028 \\
\hline \multicolumn{6}{|c|}{Trial Pits} \\
\hline TP01 & 708908.947 & 776989.400 & 28.92 & 308981.436 & 276972.349 \\
\hline TP02 & 708997.011 & 777034.300 & 29.74 & 309069.518 & 277017.259 \\
\hline TP03 & 709036.445 & 777056.301 & 30.33 & 309108.961 & 277039.265 \\
\hline TP04 & 709073.883 & 777076.503 & 30.48 & 309146.406 & 277059.472 \\
\hline TP05 & 708962.323 & 776973.124 & 29.32 & 309034.824 & 276956.070 \\
\hline TP06 & 709043.881 & 777008.579 & 30.34 & 309116.399 & 276991.533 \\
\hline TP07 & 708890.153 & 776904.683 & 28.65 & 308962.639 & 276887.613 \\
\hline TP08 & 708960.611 & 776926.812 & 29.27 & 309033.112 & 276909.748 \\
\hline TP09 & 709011.028 & 776951.722 & 29.94 & 309083.539 & 276934.663 \\
\hline TP10 & 709100.507 & 776994.633 & 30.78 & 309173.037 & 276977.584 \\
\hline \multicolumn{6}{|c|}{Slit Trenches} \\
\hline ST01 Start & 709114.219 & 777091.097 & 32.65 & 309186.751 & 277074.069 \\
\hline ST01 End & 709108.472 & 777089.739 & 31.41 & 309181.003 & 277072.711 \\
\hline ST02 Start & 709119.246 & 777072.791 & 32.78 & 309191.779 & 277055.759 \\
\hline ST02 End & 709113.544 & 777071.011 & 31.66 & 309186.076 & 277053.979 \\
\hline ST03 Start & 709122.762 & 777056.829 & 32.82 & 309195.296 & 277039.794 \\
\hline ST03 End & 709117.249 & 777054.764 & 31.91 & 309189.782 & 277037.728 \\
\hline ST04 Start & 709126.583 & 777038.904 & 32.94 & 309199.118 & 277021.865 \\
\hline ST04 End & 709121.959 & 777037.489 & 32.16 & 309194.493 & 277020.449 \\
\hline ST05 Start & 709130.518 & 777019.445 & 32.99 & 309203.054 & 277002.402 \\
\hline ST05 End & 709125.300 & 777018.445 & 32.02 & 309197.835 & 277001.401 \\
\hline ST06 Start & 709079.538 & 776982.910 & 30.87 & 309152.063 & 276965.858 \\
\hline ST06 End & 709076.829 & 776988.846 & 30.50 & 309149.354 & 276971.796 \\
\hline ST07 Start & 708941.350 & 776994.310 & 28.98 & 309013.846 & 276977.260 \\
\hline ST07 End & 708937.704 & 776999.261 & 28.86 & 309010.199 & 276982.212 \\
\hline
\end{tabular}


\section*{Appendix G - Confirmation of Feasibility}

CONFIRMATION OF FEASIBILITY
\begin{tabular}{|c|c|}
\hline & Uisceéireann \\
\hline Justin Sexton & Bosca \\
\hline Housing Capital & Oifig Sheach hadta na
Cathrach Theas \\
\hline Civic Offices & Cathair Chorcai \\
\hline Fair Street, & sh Water \\
\hline Drogheda & po Box 448 , \\
\hline Co. Louth & South City
Delivery Office \\
\hline A92P440 & Cork city. \\
\hline & www.water.ie \\
\hline
\end{tabular}

19 June 2023

Our Ref: CDS23002134 Pre-Connection Enquiry
LH-0014, Ballymakenny West, Drogheda, Louth

Dear Applicant/Agent,

\section*{We have completed the review of the Pre-Connection Enquiry.}

Irish Water has reviewed the pre-connection enquiry in relation to a Water \& Wastewater connection for a Housing Development of 126 unit(s) at LH-0014, Ballymakenny West, Drogheda, Louth, (the Development).

Based upon the details provided we can advise the following regarding connecting to the networks;
- Water Connection - Feasible Subject to upgrades
- In order to accommodate the proposed connection at the Premises, upgrade works are required to increase the capacity of the Uisce Éireann network. Uisce Éireann currently has a project on our current investment plan which will provide the upgrades and capacity which is due to be completed by Q4 in 2023 (this may be subject to change). No connection can be facilitated prior to these works being completed.
- Wastewater Connection - Feasible Subject to upgrades
- In order to accommodate the proposed connection at the Premises, upgrade works are required to increase the capacity of the Uisce Éireann network. Uisce Éireann currently has a project on
our current investment plan (Green Hill sewer Upgrade) which will provide the upgrades and capacity which is due to be completed by Q4 in 2023 (this may be subject to change). No connection can be facilitated prior to these works being completed.

Connection could be feasible to a 225 mm sewer in Ballymakenny Road which is not shown on our GIS which discharges further south of the development along Ballymakenny Road, a manhole survey to determine CL's \& IL's would be required by the developer before proceeding further to connection stage.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Irish Water.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at www.water.ie/connections/get-connected/

\section*{Where can you find more information?}
- Section A - What is important to know?
- Section B - Details of Irish Water's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Irish Water's network(s). This is not a connection offer and capacity in Irish Water's network(s) may only be secured by entering into a connection agreement with Irish Water.
For any further information, visit www.water.ie/connections, email newconnections@water.ie or contact 1800278278.

Yours sincerely,


Yvonne Harris
Head of Customer Operations

\section*{Section A - What is important to know?}
\begin{tabular}{|c|c|}
\hline What is important to know? & Why is this important? \\
\hline Do you need a contract to connect? & \begin{tabular}{l}
- Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Irish Water's network(s). \\
- Before the Development can connect to Irish Water's network(s), you must submit a connection application and be granted and sign a connection agreement with Irish Water.
\end{tabular} \\
\hline When should I submit a Connection Application? & - A connection application should only be submitted after planning permission has been granted. \\
\hline Where can I find information on connection charges? & - Irish Water connection charges can be found at: https://www.water.ie/connections/information/charges/ \\
\hline Who will carry out the connection work? & \begin{tabular}{l}
- All works to Irish Water's network(s), including works in the public space, must be carried out by Irish Water*. \\
*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
\end{tabular} \\
\hline Fire flow Requirements & \begin{tabular}{l}
- The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine. \\
- What to do? - Contact the relevant Local Fire Authority
\end{tabular} \\
\hline Plan for disposal of storm water & \begin{tabular}{l}
- The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters. \\
- What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
\end{tabular} \\
\hline Where do I find details of Irish Water's network(s)? & - Requests for maps showing Irish Water's network(s) can be submitted to: datarequests@water.ie \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline What are the design requirements for the connection(s)? & - The design and construction of the Water \& Wastewater pipes and related infrastructure to be installed in this Development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice, available at www.water.ie/connections \\
\hline Trade Effluent Licensing & \begin{tabular}{l}
- Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended). \\
- More information and an application form for a Trade Effluent License can be found at the following link: \\
https://www.water.ie/business/trade-effluent/about/ \\
**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)
\end{tabular} \\
\hline
\end{tabular}

\section*{Section B - Details of Irish Water's Network(s)}

The map included below outlines the current Irish Water infrastructure adjacent the Development: To access Irish Water Maps email datarequests@water.ie


Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Irish Water's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Irish Water.

Whilst every care has been taken in respect of the information on Irish Water's network(s), Irish Water assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Irish Water's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Irish Water's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

\section*{Appendix H - Road Safety Audit}


\section*{DOCUMENT CONTROL SHEET}
\begin{tabular}{|l|l|}
\hline Project Title & SHD Sites Louth - Ballymakenny Road Drogheda \\
\hline Project No. & \(23185-02\) \\
\hline Client & Hayes Higgins Partnership \\
\hline Document Title & Road Safety Audit Stage 1 \\
\hline Document No. & \(23185-02-001\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Status & Author(s) & Reviewed By & Approved By & Issue Date \\
\hline Draft 1 & RB / DD & RB / DD & GF & \(20 / 2 / 24\) \\
\hline Final & RB / DD & RB / DD & GF & \(11 / 4 / 24\) \\
\hline \multicolumn{4}{|r|}{ As per Section 3.1 } & \\
\hline
\end{tabular}

\section*{TABLE OF CONTENTS}
1. INTRODUCTION ..... 4
2. STAGE 1 AUDIT ..... 5
3. AUDIT TEAM STATEMENT ..... 8
4. SAFETY AUDIT FEEDBACK FORM ..... 9
APPENDIX A ..... 10

\section*{1. INTRODUCTION}
1.1 This report describes a Stage 1 Road Safety Audit carried out at a proposed housing development. The proposed project is off the Ballymakenny Road, Drogheda, County Louth in the townland of Yellowbatter. The audit was carried out on \(13^{\text {th }}\) of February 2024 in the offices of Roadplan Consulting, Kilkenny.
1.2 The audit team members were as follows:
- Ray Butler, BE CEng MIEI

Auditor Number RB210538
- Dermot Donovan, BE CEng FIEI

Auditor Number DD50250
1.3 Dermot Donovan visited the site on the \(24^{\text {th }}\) of January 2024. The audit comprised of an examination of the drawings relating to the scheme supplied by Hayes Higgins Partnership and an examination of the site.
1.4 The speed limit at the proposed works location on the Ballymakenny Road is \(50 \mathrm{~km} / \mathrm{h}\). A speed limit of \(30 \mathrm{~km} / \mathrm{h}\) is assumed to be applied to the housing estate roads.
1.5 This Stage 1 Audit has been carried out in accordance with the relevant sections of TII GE-STY-01024. The team has examined only those issues within the design relating to the road safety implications of the scheme and has therefore not examined or verified the compliance of the design to any other criteria.
1.6 All problems described in this report are considered by the audit team to require action in order to improve the safety of the scheme and minimise accident occurrence.
1.7 Appendix A contains copies of the audited drawings.
2. STAGE 1 AUDIT

Location: Main access road
2.1 Problem: Turning areas for vehicles

Parallel parking bays are provided on the main access road. However, areas where vehicles might turn to exit the housing estate are only provided in the two cul-de-sacs and at the end of the main access road. Drivers must either travel to the turning area at the end of the main access road or attempt a 3 -point turn at their parking space. This puts pedestrians, particularly children who may be playing on the roadway, at risk of injury from a collision with a motor vehicle.


Recommendation:
Provide additional turning bays for vehicles.

Location: Main access road

\subsection*{2.2 Problem: Right angle bends}

There are five low-radius right-angle bends on the access road. Large vehicles, such as refuse trucks, may have to mount the footpaths to negotiate the bends putting pedestrians at risk of collisions and injury.

\section*{Recommendation:}

Carry out an auto track analysis and provide additional width on curves if necessary.

Location: Main access road
2.3 Problem: High speed

The section of road between the access to the development and dwelling number 15 (Block 4) is relatively long and straight so motor vehicles may travel relatively fast. Pedestrians entering the road to cross it may be obscured from a driver's view by vehicles parked on the roadsides. In such circumstances, the risk of occurrence of injury collisions between pedestrians and vehicles may increase.


\section*{Recommendation:}

Provide measures to restrict speed of vehicles on this section of road.

Location: Development access
2.4 Problem: Junction layout

The intended layout of the mouth of the access onto the Ballymakenny Road is unclear: the radiused kerb lines appear to address the existing grass verge rather than the road edge. It may be the case that an indented bay is to be formed to accommodate on-road drop-off at school time; if so, vehicles stopped on the roadside at the access could obstruct the sightlines of drivers exiting the development, increasing the collision risk.


\section*{Recommendation:}

Provide a conventional access layout and ensure that visibility splays are not obstructed by parked vehicles.

\section*{Location: Entire development}

\subsection*{2.5 Problem: Crossings at junctions}

Facilities for pedestrians to cross the road are not provided at the mouth of the development access or within the development at the junctions and other locations where they will cross. This may increase difficulty for pedestrians, particularly those with restricted mobility, and may increase the risk of their being struck by motor vehicles.

\section*{Recommendation:}

Provide dropped kerbs and tactile paving to facilitate pedestrians in crossing the road.

Location: Spine road of development

\subsection*{2.6 Problem: Crossings on bends}

Pedestrian crossings are shown to be provided on bends on the spine road. Pedestrians who are crossing from the insides of bends may not be seen by approaching drivers if visibility is obstructed by parked vehicles or by planting. This may increase the risk of pedestrians being struck by motor vehicles. Examples of such locations are shown in the following images.


\section*{Recommendation:}

It should be ensured that there is adequate inter-visibility between pedestrians waiting to cross and approaching drivers.

Location: Entire Development

\subsection*{2.7 Observation: Cycle Parking}

Some dwellings are terraced and do not have exterior access to rear gardens. Provision should be made for cycle parking so that bikes need not be wheeled through the dwellings.

\section*{3. AUDIT TEAM STATEMENT}
3.1 We certify that we have examined the drawings listed in Appendix A and have inspected the site. This examination has been carried out with the sole purpose of identifying any features of the scheme that could be removed or modified to improve the safety of the scheme.
Signed \(\qquad\) ar s Ray Butler
Date
\(13^{\text {th }}\) February 2024
Signed \(\qquad\) Remot Ibnovan \(\qquad\) Dermot Donovan
Date 13th February 2024 \(\qquad\)

\section*{4. SAFETY AUDIT FEEDBACK FORM}

Scheme: SHD Sites Louth - Ballymakenny Road, Drogheda
Document Number: 23185-02-001
Audit Stage: Stage 1 RSA
Date Audit Completed: 13th February 2024


Date


\section*{Safety Audit} Signed off


Employer
Print Name
10.04.2024

Date 10.04.2024.

\section*{Safety Audit}

Signed off


\section*{Audit Team Leader}

Print Name
Date 11/4/24

\section*{APPENDIX A}

\section*{List of Drawings Examined}

The following drawings have been provided electronically in PDF format by Hayes Higgins Partnership and are appended.
\begin{tabular}{|l|l|l|}
\hline Drawing number & Rev & Drawing title \\
\hline \(3587-E M L-X X-02-D R-A-0003\) & & Proposed Site Layout \\
\hline 01 & & Proposed Levels Proposed Layout 01 \\
\hline
\end{tabular}



\section*{Appendix I-Traffic Impact Assessment}

\section*{PROPOSED RESIDENTIAL DEVELOPMENT AT BALLYMAKENNY, DROGHEDA, Co. LOUTH}

\section*{Traffic \& Impact Assessment}
for

\section*{Louth County Council}

April 2024

ROADPLAN
GONSULTINE

7, Ormonde Road Kilkenny.
R95 N4FE

Tel: 0567795800 info@roadplan.ie www.roadplan.ie

\section*{DOCUMENT CONTROL SHEET}
\begin{tabular}{|l|l|}
\hline Project Title & Proposed Residential Development at Ballymakenny, Drogheda, Co. Louth \\
\hline Project No. & \(23185-02\) \\
\hline Client & Louth County Council \\
\hline Document Title & Traffic Impact Assessment \\
\hline Document No. & \(23185-02-002\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Status & Author(s) & Reviewed By & Approved By & Issue Date \\
\hline Draft 1 & RF & DD & GF & \(19 / 02 / 2024\) \\
\hline Final & RF & DD & GF & \(11 / 4 / 2024\) \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{TABLE OF CONTENTS}
1. INTRODUCTION ..... 4
1.1. INTRODUCTION ..... 4
1.2. OBJECTIVES ..... 4
1.3. STUDY METHODOLOGY ..... 4
1.4. STRUCTURE OF REPORT ..... 4
2. PROPOSED DEVELOPMENT ..... 6
2.1. SITE LOCATION ..... 6
2.2. DESCRIPTION OF PROPOSED DEVELOPMENT ..... 6
3. EXISTING AND PROPOSED TRAFFIC CONDITIONS ..... 7
3.1. EXISTING TRAFFIC FLOWS ..... 7
3.2. EXISTING ROAD NETWORK ..... 7
4. TRAFFIC GENERATION AND TRIP DISTRIBUTION .....  8
4.1. DEVELOPMENT TRIP GENERATION ..... 8
4.1.1 Residential ..... 8
4.2. TRIP DISTRIBUTION ..... 8
4.3. FUTURE YEAR TRAFFIC GROWTH ..... 9
5. OPERATIONAL ASSESSMENTS ..... 10
5.1. INTRODUCTION ..... 10
5.2. BALLYMAKENNY RD / DEVELOPMENT ACCESS PRIORITY JN ..... 10
6. PARKING ..... 12
6.1. CAR PARKING PROVISION ..... 12
6.2. CAR PARKING REQUIREMENTS FROM DEVELOPMENT PLAN ..... 12
6.3. BICYCLE PARKING REQUIREMENTS FROM DEVELOPMENT PLAN ..... 12
7. CONCLUSIONS ..... 13
APPENDICES ..... 14
APPENDIX A - DRAWINGS
APPENDIX B - TRAFFIC COUNTS
APPENDIX C - TRAFFIC FLOW SHEETS
APPENDIX D - TRICS INFORMATION
APPENDIX E - PICADY RESULTS

\section*{INTRODUCTION}

\subsection*{1.1. INTRODUCTION}

Roadplan Consulting was commissioned by Hayes Higgins Partnership on behalf of Louth County Council to prepare a Traffic Impact Assessment for a proposed residential development at Ballymakenny, Drogheda, Co. Louth.

In preparing this report, Roadplan Consulting has made reference to:
- The Louth County Development Plan 2021-2027;
- The Institute of Highways and Transportation Guidelines on the Preparation of Traffic Impact Assessments;
- The TII Transport Assessment Guidelines;
- The TII National Traffic Model.

\subsection*{1.2. OBJECTIVES}

The objective of this report is to examine the traffic implications of the proposed residential development in terms of how it can integrate with existing traffic in the area. The report will determine and quantify the extent of additional trips generated by the residential development and the impact of such trips on the operational performance of the local road network and junctions, in particular the proposed Ballymakenny Rd / Development Access priority junction.

\subsection*{1.3. STUDY METHODOLOGY}

The methodology adopted for this report is summarised as follows:
- Traffic counts were undertaken by IDASO on Tuesday \(9^{\text {th }}\) of January 2024 during a 12 -hour period (07:00 to 19:00). Count information was obtained at the existing Ballymakenny Rd / Castle Manor priority junction (located adjacent to the proposed development access).
- Existing Traffic Assessment - A spreadsheet model was created which contains the base year DO-NOTHING traffic count data described above. The traffic count data was used to develop an PICADY model of the proposed Ballymakenny Rd / Development Access priority junction.
- Future Year Assessment - The estimated future year traffic volumes on the study area road network, as a result of the increase in background traffic and development related traffic was used to assess the future operational performance of the junction at the year of opening of the proposed development, 5 years after opening and 15 years after opening.

\subsection*{1.4. STRUCTURE OF REPORT}

Following this introduction, the report is set out as follows:
- Chapter 2 provides details of the proposed development;
- Chapter 3 provides an overview of the existing traffic conditions and the local road network, identifying any existing issues related to traffic flow or road infrastructure;
- Chapters 4 and 5 outline the analysis as described in the Study Methodology above. The analysis examines trip generation, distribution and resulting junction operational performance with the future development in place;
- Chapter 6 establishes the parking requirements for the development and sets out how these needs are provided for;
- Chapter 7 presents the conclusions of the report

\section*{2. PROPOSED DEVELOPMENT}

\subsection*{2.1. SITE LOCATION}

The proposed residential development is located at Ballymakenny Road, Drogheda, Co. Louth. The proposed development is bounded by residential estates to the south and west, industrial units to the north and the Ballymakenny Rd to the east as shown on Figure 2.1 'Site Location Map'.


Figure 2.1 - Site Location Map

\subsection*{2.2. DESCRIPTION OF PROPOSED DEVELOPMENT}

The development will comprise of the construction of 97 no. residential units and all ancillary development works including access roads, footpaths, parking, drainage, landscaping and amenity areas.

A layout of the proposed residential development, its access point and its internal access road is shown on the site plan which is contained in Appendix A - Drawings.

\section*{3. EXISTING AND PROPOSED TRAFFIC CONDITIONS}

\subsection*{3.1. EXISTING TRAFFIC FLOWS}

A traffic count was undertaken by IDASO on Tuesday \(09^{\text {th }}\) of January 2024 during a 12hour period (07:00 to 19:00). The count data is provided in Appendix B - Traffic Counts. Count information was obtained at the following junction:
- Ballymakenny Rd / Castle Manor priority junction

The traffic flows during the AM and PM peak hours were abstracted from the surveyed data and are shown in the following tables.

Ballymakenny Rd / Castle Manor Priority Junction
2024 AM Peak - Base Flows
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & \begin{tabular}{c} 
Ballymakenny Rd \\
(south)
\end{tabular} & \begin{tabular}{c} 
Castle \\
Manor
\end{tabular} & \begin{tabular}{c} 
Ballymakenny Rd \\
(north)
\end{tabular} & Totals \\
\hline Ballymakenny Rd (south) & 0 & 11 & 425 & \(\mathbf{4 3 6}\) \\
\hline Castle Manor & 39 & 0 & 9 & \(\mathbf{4 8}\) \\
\hline Ballymakenny Rd (north) & 586 & 3 & 0 & \(\mathbf{5 8 9}\) \\
\hline Totals & \(\mathbf{6 2 5}\) & \(\mathbf{1 4}\) & \(\mathbf{4 3 4}\) & \(\mathbf{1 0 7 3}\) \\
\hline
\end{tabular}

2024 PM Peak - Base Flows
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & \begin{tabular}{c} 
Ballymakenny Rd \\
(south)
\end{tabular} & \begin{tabular}{c} 
Castle \\
Manor
\end{tabular} & \begin{tabular}{c} 
Ballymakenny Rd \\
(north)
\end{tabular} & Totals \\
\hline Ballymakenny Rd (south) & 0 & 37 & 212 & \(\mathbf{2 4 9}\) \\
\hline Castle Manor & 21 & 0 & 4 & \(\mathbf{2 5}\) \\
\hline Ballymakenny Rd (north) & 210 & 4 & 0 & \(\mathbf{2 1 4}\) \\
\hline Totals & \(\mathbf{2 3 1}\) & \(\mathbf{4 1}\) & \(\mathbf{2 1 6}\) & \(\mathbf{4 8 8}\) \\
\hline
\end{tabular}

\subsection*{3.2. EXISTING ROAD NETWORK}

Access to the proposed residential development will be via a proposed access onto the Ballymakenny Road. The Ballymakenny Rd has the following characteristics at the proposed access to the residential development:
- It is a single carriageway road that is approximately 9 m wide.
- A right turn lane is provided along the Ballymakenny Rd.
- There is a 2 m wide footpath provided on the western side of the Ballymakenny Rd and a combined footpath / cyclepath provided on the eastern side of the Ballymakenny Rd.
- Street lighting is provided along the Ballymakenny Rd.

\section*{4. TRAFFIC GENERATION AND TRIP DISTRIBUTION}

\subsection*{4.1. DEVELOPMENT TRIP GENERATION}

The TRICS database has been used to predict the trip generation to and from the proposed residential development for the AM and PM peak periods. Full details of the TRICS information used for the assessments are provided in Appendix D - TRICS information.

\subsection*{4.1.1 Residential}

The category of "Residential - Local Authority Houses" has been assessed as the most appropriate development type category for this part of the development and the trip rates for the AM and PM peak periods are shown below.

Trip Rates per No. of Units
\begin{tabular}{|c|c|c|}
\hline & Trip rate to development & Trip rate from development \\
\hline AM Peak & 0.112 & 0.246 \\
\hline PM Peak & 0.246 & 0.164 \\
\hline
\end{tabular}

For the proposed 97 residential units, this would give the following trips to and from the proposed development.

Trip Generation - 97 Dwellings
\begin{tabular}{|c|c|c|}
\hline & Trip rate to development & Trip rate from development \\
\hline AM Peak & 11 & 24 \\
\hline PM Peak & 24 & 16 \\
\hline
\end{tabular}

\subsection*{4.2. TRIP DISTRIBUTION}

Vehicular trips to and from the proposed residential development will arrive / depart via the proposed Ballymakenny Rd / Development Access priority junction. It is assumed that the distribution of development traffic at the proposed access will follow the same pattern as the distribution of existing traffic at the existing Ballymakenny Rd / Castle Manor priority junction.

The following diagram shows the proposed traffic distribution percentage for the AM and PM peak at the proposed Ballymakenny Rd / Development Access priority.

AM Peak - Development Trip Distribution (Percentage)
PM Peak - Development Trip Distribution (Percentage)


Figure 4.1 - Existing traffic distribution percentage

Using the proposed directional splits shown above and the trips generated by the proposed residential development outlined in 4.1, the following diagrams show the turning movements of predicted development traffic at the proposed Ballymakenny Rd / Development Access priority junction during the AM and PM peak hours.

PM Peak - Development Trip Distribution


Figure 4.2 - Proposed traffic distribution percentage

\subsection*{4.3. FUTURE YEAR TRAFFIC GROWTH}

The TII issues a range of forecasts: low growth, medium growth and high growth. Due to the location and nature of the proposed residential development, and given the recent economic expansion, we have used medium growth factors in our assessment.

The zone in which the site is located is number 171 in the TII National Traffic Model. The medium growth factors for each assessment year are as follows.
\begin{tabular}{|c|c|c|c|c|}
\hline Zone & \begin{tabular}{c}
2024 \\
Base Year
\end{tabular} & \begin{tabular}{c}
2026 \\
Development \\
Completion
\end{tabular} & \begin{tabular}{c}
2031 \\
5 years after dev. \\
completion
\end{tabular} & \begin{tabular}{c} 
15 years after dev. \\
completion
\end{tabular} \\
\hline 171 & 1.00 & \(3.26 \%\) & \(11.88 \%\) & \(14.08 \%\) \\
\hline
\end{tabular}

\section*{5. OPERATIONAL ASSESSMENTS}

\subsection*{5.1. INTRODUCTION}

Traffic generated by the proposed development will have some effect on the local road network surrounding the site. The following junction was assessed:
- Ballymakenny Rd / Development Access priority junction

\subsection*{5.2. BALLYMAKENNY RD / DEVELOPMENT ACCESS PRIORITY JN}

A capacity assessment has been undertaken using the computer program PICADY for the AM and PM peak hours.

The following table summarises the effects that the proposed development will have on this junction in 2026, 2031 and 2041 using the existing and predicted traffic flows shown in Appendix C - Traffic Flow Sheets. Full PICADY printouts are provided in Appendix E PICADY Results.

The parameters shown in the tables are defined as follows:
Ratio of Flow to Capacity (RFC) is a factor indicating the flow on a junction arm relative to its capacity. An RFC of 1.0 means the junction has reached its ultimate capacity and an RFC of 0.85 means that the junction has reached its practical capacity.

Avg. Queue is the average number of vehicles queued over the time period on the junction approach.

Queue delay is the average number of seconds delay to each vehicle in the time period.
Total Delay is the total number of vehicle hours of delay to all vehicles at the junction over the time period
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Period & Approach & Predicted RFC value & Avg Queue (vehicles) & Queue delay (secs./veh.) \\
\hline \multirow{6}{*}{\begin{tabular}{l}
2026 \\
With \\
Development
\end{tabular}} & \multirow{3}{*}{AM Peak} & Ballymakenny Rd (south) & - & - & - \\
\hline & & Development Access & 0.10 & 0 & 15 \\
\hline & & Ballymakenny Rd (north) & 0.04 & 0 & 5 \\
\hline & \multirow{3}{*}{PM Peak} & Ballymakenny Rd (south) & - & - & - \\
\hline & & Development Access & 0.05 & 0 & 10 \\
\hline & & Ballymakenny Rd (north) & 0.06 & 0 & 6 \\
\hline \multirow{6}{*}{\begin{tabular}{l}
2031 \\
With \\
Development
\end{tabular}} & \multirow{3}{*}{AM Peak} & Ballymakenny Rd (south) & - & - & - \\
\hline & & Development Access & 0.10 & 0 & 16 \\
\hline & & Ballymakenny Rd (north) & 0.04 & 0 & 4 \\
\hline & \multirow{3}{*}{PM Peak} & Ballymakenny Rd (south) & - & - & - \\
\hline & & Development Access & 0.05 & 0 & 10 \\
\hline & & Ballymakenny Rd (north) & 0.06 & 0 & 6 \\
\hline \multirow{6}{*}{\begin{tabular}{l}
2041 \\
With \\
Development
\end{tabular}} & \multirow{3}{*}{AM Peak} & Ballymakenny Rd (south) & - & - & - \\
\hline & & Development Access & 0.11 & 0 & 16 \\
\hline & & Ballymakenny Rd (north) & 0.05 & 0 & 4 \\
\hline & \multirow{3}{*}{PM Peak} & Ballymakenny Rd (south) & - & - & - \\
\hline & & Development Access & 0.05 & 0 & 10 \\
\hline & & Ballymakenny Rd (north) & 0.06 & 0 & 6 \\
\hline
\end{tabular}

The summary predictions shown in the table above indicate that in 2026, 2031 and 2041 with an increase in background flows and the proposed development operational the
proposed Ballymakenny Rd / Development Access priority junction will operate within capacity with no queues and minimal delays during the AM and PM peak period.
6. PARKING

\subsection*{6.1. CAR PARKING PROVISION}

A total of 97 car parking spaces will be provided to cater for the proposed residential development as shown on the architect's drawing contained in Appendix A - Drawings.

\subsection*{6.2. CAR PARKING REQUIREMENTS FROM DEVELOPMENT PLAN}

The 'Louth County Development Plan 2021-2027' lists standard provision for car parking and the table below sets out those requirements in relation to the residential development.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ Parking Standards for Residential Development } \\
\hline Land-use & Requirements & Quantity & Parking \\
\hline Residential & 1 car space per unit & 97 Dwellings & 97 spaces \\
\hline \multicolumn{4}{|l|}{}
\end{tabular}

Table 6.1 - Car parking requirements from the Louth County Development Plan
The Louth County Development Plan indicates that the number of parking spaces required for the proposed residential development is 97 parking spaces.

It is proposed to provide a total of 97 car parking spaces which will cater for the proposed residential development.

\subsection*{6.3. BICYCLE PARKING REQUIREMENTS FROM DEVELOPMENT PLAN}

The 'Louth County Development Plan 2021-2027' lists standard provision for bicycle parking and the table below sets out those requirements in relation to the residential development.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ Parking Standards for Residential Development } \\
\hline Land-use & Requirements & Quantity & Parking \\
\hline Residential & \begin{tabular}{c} 
1 bicycle space per unit \\
+ \\
1
\end{tabular} & \\
\hline
\end{tabular}

Table 6.2 - Bicycle parking requirements from the Louth County Development Plan
The Louth County Development Plan indicates that the number of bicycle parking spaces required for the proposed residential development is 116 bicycle parking spaces.

It is proposed to provide a total of 116 bicycle parking spaces which will cater for the proposed residential development.

\section*{7. CONCLUSIONS}

The main conclusions of this study are summarised as follows:
- Capacity analysis of the proposed Ballymakenny Rd / Development Access priority junction indicates that in 2026, 2031 and 2041 with an increase in background flows and the proposed residential development operational the proposed Ballymakenny Rd / Development Access priority junction will operate within capacity with no queues and minimal delays during the AM and PM peak period.
- The development provides adequate car parking spaces and bicycle space as setout in Chapter 6 above.
- Facilities for pedestrians are included in the internal layout.

APPENDICES




2024 AM Peak - Base Flows
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 434 & \(\mathbf{4 3 4}\) \\
\hline Proposed Access & 0 & 0 & 0 & \(\mathbf{0}\) \\
\hline Ballymakenny Rd (north) & 586 & 0 & 0 & 586 \\
\hline Totals & 586 & \(\mathbf{0}\) & \(\mathbf{4 3 4}\) & \(\mathbf{1 0 2 0}\) \\
\hline
\end{tabular}

\section*{AM Peak - Development flows}
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 1 & 0 & \(\mathbf{1}\) \\
\hline Proposed Access & 19 & 0 & 5 & \(\mathbf{2 4}\) \\
\hline Ballymakenny Rd (north) & 0 & 10 & 0 & \(\mathbf{1 0}\) \\
\hline Totals & \(\mathbf{1 9}\) & \(\mathbf{1 1}\) & \(\mathbf{5}\) & \(\mathbf{3 5}\) \\
\hline
\end{tabular}

2026 AM Peak - No Development (Existing + 3.26\%)
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 448 & \(\mathbf{4 4 8}\) \\
\hline Proposed Access & 0 & 0 & 0 & 0 \\
\hline Ballymakenny Rd (north) & 605 & 0 & 0 & \(\mathbf{6 0 5}\) \\
\hline Totals & \(\mathbf{6 0 5}\) & \(\mathbf{0}\) & \(\mathbf{4 4 8}\) & \(\mathbf{1 0 5 3}\) \\
\hline
\end{tabular}

2026 AM Peak - With Development
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 1 & 448 & \(\mathbf{4 4 9}\) \\
\hline Proposed Access & 19 & 0 & 5 & \(\mathbf{2 4}\) \\
\hline Ballymakenny Rd (north) & 605 & 10 & 0 & \(\mathbf{6 1 5}\) \\
\hline Totals & \(\mathbf{6 2 4}\) & \(\mathbf{1 1}\) & \(\mathbf{4 5 3}\) & \(\mathbf{1 0 8 8}\) \\
\hline
\end{tabular}

2031 AM Peak - No Development (Existing + 11.88\%)
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 486 & 486 \\
\hline Proposed Access & 0 & 0 & 0 & 0 \\
\hline Ballymakenny Rd (north) & 656 & 0 & 0 & \(\mathbf{0 5 6}\) \\
\hline Totals & 656 & \(\mathbf{0}\) & \(\mathbf{4 8 6}\) & \(\mathbf{1 1 4 1}\) \\
\hline
\end{tabular}

2031 AM Peak - With Development
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 1 & 486 & 4 \\
\hline Proposed Access & 19 & 0 & 5 & \(\mathbf{4 8 7}\) \\
\hline Ballymakenny Rd (north) & 656 & 10 & 0 & 66 \\
\hline Totals & \(\mathbf{6 7 5}\) & \(\mathbf{1 1}\) & \(\mathbf{4 9 1}\) & \(\mathbf{1 1 7 6}\) \\
\hline
\end{tabular}

2041 AM Peak - No Development (Existing + 14.08\%)
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 495 & 495 \\
\hline Proposed Access & 0 & 0 & 0 & 0 \\
\hline Ballymakenny Rd (north) & 669 & 0 & 0 & \(\mathbf{6 6 9}\) \\
\hline Totals & \(\mathbf{6 6 9}\) & \(\mathbf{0}\) & \(\mathbf{4 9 5}\) & \(\mathbf{1 1 6 4}\) \\
\hline
\end{tabular}

2041 AM Peak - With Development
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 1 & 495 & \(\mathbf{4 9 6}\) \\
\hline Proposed Access & 19 & 0 & 5 & \(\mathbf{2 4}\) \\
\hline Ballymakenny Rd (north) & 669 & 10 & 0 & \(\mathbf{6 7 9}\) \\
\hline Totals & \(\mathbf{6 8 8}\) & \(\mathbf{1 1}\) & \(\mathbf{5 0 0}\) & \(\mathbf{1 1 9 9}\) \\
\hline
\end{tabular}

\section*{Ballymakenny Rd / Proposed Access Priority Junction - PM Peak Hour}

2024 PM Peak - Base Flows
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 216 & \(\mathbf{2 1 6}\) \\
\hline Proposed Access & 0 & 0 & 0 & \(\mathbf{0}\) \\
\hline Ballymakenny Rd (north) & 210 & 0 & 0 & \(\mathbf{2 1 0}\) \\
\hline Totals & \(\mathbf{2 1 0}\) & \(\mathbf{0}\) & \(\mathbf{2 1 6}\) & \(\mathbf{4 2 6}\) \\
\hline
\end{tabular}

PM Peak - Development flows
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 2 & 0 & \(\mathbf{2}\) \\
\hline Proposed Access & 14 & 0 & 2 & \(\mathbf{1 6}\) \\
\hline Ballymakenny Rd (north) & 0 & 22 & 0 & \(\mathbf{2 2}\) \\
\hline Totals & \(\mathbf{1 4}\) & \(\mathbf{2 4}\) & \(\mathbf{2}\) & \(\mathbf{4 0}\) \\
\hline
\end{tabular}

\section*{2026 PM Peak - No Development (Existing + 3.26\%)}
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 223 & \(\mathbf{2 2 3}\) \\
\hline Proposed Access & 0 & 0 & 0 & 0 \\
\hline Ballymakenny Rd (north) & 217 & 0 & 0 & \(\mathbf{2 1 7}\) \\
\hline Totals & \(\mathbf{2 1 7}\) & \(\mathbf{0}\) & \(\mathbf{2 2 3}\) & \(\mathbf{4 4 0}\) \\
\hline
\end{tabular}

\section*{2026 PM Peak - With Development}
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 2 & 223 & \(\mathbf{2 2 5}\) \\
\hline Proposed Access & 14 & 0 & 2 & \(\mathbf{1 6}\) \\
\hline Ballymakenny Rd (north) & 217 & 22 & 0 & \(\mathbf{2 3 9}\) \\
\hline Totals & \(\mathbf{2 3 1}\) & \(\mathbf{2 4}\) & \(\mathbf{2 2 5}\) & \(\mathbf{4 8 0}\) \\
\hline
\end{tabular}
2031 PM Peak - No Development (Existing + 11.88\%)
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 242 & 2 \\
\hline Proposed Access & 0 & 0 & 0 & 0 \\
\hline Ballymakenny Rd (north) & 235 & 0 & 0 & \(\mathbf{2 4 2}\) \\
\hline Totals & 235 & 0 & \(\mathbf{2 4 2}\) & \(\mathbf{4 7 5}\) \\
\hline
\end{tabular}

\section*{2031 PM Peak - With Development}
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 2 & 242 & 24 \\
\hline Proposed Access & 14 & 0 & 2 & \(\mathbf{2 4 4}\) \\
\hline Ballymakenny Rd (north) & 235 & 22 & 0 & \(\mathbf{2 5 7}\) \\
\hline Totals & 249 & \(\mathbf{2 4}\) & \(\mathbf{2 4 4}\) & \(\mathbf{5 1 7}\) \\
\hline
\end{tabular}

2041 PM Peak - No Development (Existing + 14.08\%)
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 0 & 246 & \(\mathbf{2 4 6}\) \\
\hline Proposed Access & 0 & 0 & 0 & \(\mathbf{0}\) \\
\hline Ballymakenny Rd (north) & 240 & 0 & 0 & \(\mathbf{2 4 0}\) \\
\hline Totals & \(\mathbf{2 4 0}\) & \(\mathbf{0}\) & \(\mathbf{2 4 6}\) & \(\mathbf{4 8 6}\) \\
\hline
\end{tabular}

\section*{2041 PM Peak - With Development}
\begin{tabular}{|l|c|c|c|c|}
\hline From / To & Ballymakenny Rd (south) & Proposed Access & Ballymakenny Rd (north) & Totals \\
\hline Ballymakenny Rd (south) & 0 & 2 & 246 & 2 \\
\hline Proposed Access & 14 & 0 & 2 & \(\mathbf{2 4 8}\) \\
\hline Ballymakenny Rd (north) & 240 & 22 & 0 & \(\mathbf{2 6 2}\) \\
\hline Totals & 254 & \(\mathbf{2 4}\) & \(\mathbf{2 4 8}\) & \(\mathbf{5 2 6}\) \\
\hline
\end{tabular}

\section*{TRIP RATE CALCULATI ON SELECTI ON PARAMETERS:}

Land Use : 03-RESIDENTIAL
Category : B - AFFORDABLE/LOCAL AUTHORITY HOUSES
TOTAL VEHI CLES
Selected regions and areas:
13 MUNSTER
TI TIPPERARY
15 GREATER DUBLI N
2 days
DL DUBLIN
2 days
This section displays the number of survey days per TRICS \(\circledR^{\circledR}\) sub-region in the selected set

\section*{Primary Filtering selection:}

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.
\begin{tabular}{ll} 
Parameter: & No of Dwellings \\
Actual Range: & 8 to 48 (units:) \\
Range Selected by User: & 8 to 120 (units:) \\
& \\
Parking Spaces Range: & All Surveys Included
\end{tabular}

Parking Spaces per Dwelling Range: All Surveys Included
Bedrooms per Dwelling Range: All Surveys Included
Percentage of dwellings privately owned: All Surveys Included
Public Transport Provision:
Selection by: Include all surveys
Date Range: \(\quad 01 / 01 / 15\) to \(20 / 11 / 17\)
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.
\begin{tabular}{ll} 
Selected survey days: & \\
\hline Monday & 2 days \\
Tuesday & 1 days \\
Friday & 1 days
\end{tabular}

This data displays the number of selected surveys by day of the week.
Selected survey types:
\begin{tabular}{ll}
\hline Manual count & 4 days \\
Directional ATC Count & 0 days
\end{tabular}

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Suburban Area (PPS6 Out of Centre) 3
Neighbourhood Centre (PPS6 Local Centre) 1
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:
Residential Zone
4

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Inclusion of Servicing Vehicles Counts:
\(\begin{array}{ll}\text { Servicing vehicles Included } & \text { X days }- \text { Selected } \\ \text { Servicing vehicles Excluded } & 4 \text { days }- \text { Selected }\end{array}\)

\section*{Secondary Filtering selection:}

\section*{Use Class:}

C3 4 days
This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order (England) 2020 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range:
All Surveys Included

\section*{Secondary Filtering selection (Cont.):}

Population within 1 mile:
1,001 to \(5,000 \quad 1\) days
5,001 to \(10,000 \quad 2\) days
15,001 to \(20,000 \quad 1\) days
This data displays the number of selected surveys within stated 1-mile radii of population.
Population within 5 miles:
\begin{tabular}{ll}
5,001 to 25,000 & 2 days \\
250,001 to 500,000 & 1 days \\
500,001 or More & 1 days
\end{tabular}

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:
\begin{tabular}{ll}
\hline 0.6 to 1.0 & 3 days \\
1.1 to 1.5 & 1 days
\end{tabular}

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
No 4 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

\section*{PTAL Rating:}

No PTAL Present 4 days
This data displays the number of selected surveys with PTAL Ratings.

LIST OF SITES relevant to selection parameters


This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 03 - RESIDENTIAL/B - AFFORDABLE/LOCAL AUTHORITY HOUSES
TOTAL VEHI CLES
Calculation factor: 1 DWELLS
BOLD print indicates peak (busiest) period
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ARRIVALS} & \multicolumn{3}{|c|}{DEPARTURES} & \multicolumn{3}{|c|}{TOTALS} \\
\hline Time Range & No. Days & Ave. DWELLS & Trip Rate & No. Days & Ave. DWELLS & Trip Rate & No. Days & Ave. DWELLS & Trip Rate \\
\hline 00:00-01:00 & & & & & & & & & \\
\hline 01:00-02:00 & & & & & & & & & \\
\hline 02:00-03:00 & & & & & & & & & \\
\hline 03:00-04:00 & & & & & & & & & \\
\hline 04:00-05:00 & & & & & & & & & \\
\hline 05:00-06:00 & & & & & & & & & \\
\hline 06:00-07:00 & & & & & & & & & \\
\hline 07:00-08:00 & 4 & 34 & 0.075 & 4 & 34 & 0.157 & 4 & 34 & 0.232 \\
\hline 08:00-09:00 & 4 & 34 & 0.112 & 4 & 34 & 0.246 & 4 & 34 & 0.358 \\
\hline 09:00-10:00 & 4 & 34 & 0.157 & 4 & 34 & 0.231 & 4 & 34 & 0.388 \\
\hline 10:00-11:00 & 4 & 34 & 0.209 & 4 & 34 & 0.157 & 4 & 34 & 0.366 \\
\hline 11:00-12:00 & 4 & 34 & 0.194 & 4 & 34 & 0.224 & 4 & 34 & 0.418 \\
\hline 12:00-13:00 & 4 & 34 & 0.254 & 4 & 34 & 0.149 & 4 & 34 & 0.403 \\
\hline 13:00-14:00 & 4 & 34 & 0.142 & 4 & 34 & 0.224 & 4 & 34 & 0.366 \\
\hline 14:00-15:00 & 4 & 34 & 0.239 & 4 & 34 & 0.194 & 4 & 34 & 0.433 \\
\hline 15:00-16:00 & 4 & 34 & 0.284 & 4 & 34 & 0.254 & 4 & 34 & 0.538 \\
\hline 16:00-17:00 & 4 & 34 & 0.246 & 4 & 34 & 0.164 & 4 & 34 & 0.410 \\
\hline 17:00-18:00 & 4 & 34 & 0.388 & 4 & 34 & 0.269 & 4 & 34 & 0.657 \\
\hline 18:00-19:00 & 4 & 34 & 0.246 & 4 & 34 & 0.209 & 4 & 34 & 0.455 \\
\hline 19:00-20:00 & & & & & & & & & \\
\hline 20:00-21:00 & & & & & & & & & \\
\hline 21:00-22:00 & & & & & & & & & \\
\hline 22:00-23:00 & & & & & & & & & \\
\hline 23:00-24:00 & & & & & & & & & \\
\hline Total Rates: & & & 2.546 & & & 2.478 & & & 5.024 \\
\hline
\end{tabular}

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

\section*{Parameter summary}

Trip rate parameter range selected:
8-48 (units:)
Survey date date range:
Number of weekdays (Monday-Friday): 01/01/15-20/11/17

4
Number of Saturdays:
0
Number of Sundays:
0
Surveys automatically removed from selection:
Surveys manually removed from selection:0

This section displays a quick summary of some of the data filtering selections made by the TRICS \({ }^{\circledR}\) user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

\section*{Junctions 9}

\section*{PICADY 9 - Priority Intersection Module}

Version: 9.5.0.6896
© Copyright TRL Limited, 2018
For sales and distribution information, program advice and maintenance, contact TRL:
+44(0)1344379777 software@trl.co.uk www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Proposed Access.j9
Path: S:\Jobs\2023\23185 \(3 \times\) SHD sites Louth RSA1 + TIA\23185-02 Ballymakenny\Reports\Working\PICADY
Report generation date: 15/02/2024 11:39:15
"2026 with dev, AM
"2026 with dev, PM
"2031 with dev, AM
"2031 with dev, PM
"2041 with dev, AM
"2041 with dev, PM
Summary of junction performance
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{AM} & \multicolumn{4}{|c|}{PM} \\
\hline & Queue (Veh) & Delay (s) & RFC & Los & Queue (Veh) & Delay (s) & RFC & LOS \\
\hline & \multicolumn{8}{|c|}{2026 with dev} \\
\hline Stream B-AC & 0.1 & 14.73 & 0.10 & B & 0.0 & 10.08 & 0.05 & B \\
\hline \multirow[t]{2}{*}{Stream C-AB} & 0.1 & 4.54 & 0.04 & A & 0.1 & 5.80 & 0.06 & A \\
\hline & \multicolumn{8}{|c|}{2031 with dev} \\
\hline Stream B-AC & 0.1 & 15.93 & 0.10 & C & 0.1 & 10.30 & 0.05 & B \\
\hline \multirow[t]{2}{*}{Stream C-AB} & 0.1 & 4.42 & 0.04 & A & 0.1 & 5.75 & 0.06 & A \\
\hline & \multicolumn{8}{|c|}{2041 with dev} \\
\hline Stream B-AC & 0.1 & 16.25 & 0.11 & C & 0.1 & 10.36 & 0.05 & B \\
\hline Stream C-AB & 0.1 & 4.39 & 0.05 & A & 0.1 & 5.73 & 0.06 & A \\
\hline
\end{tabular}

\footnotetext{
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
}

\section*{File summary}

File Description
\begin{tabular}{|l|l|}
\hline Title & \\
\hline Location & \\
\hline Site number & \\
\hline Date & \(15 / 02 / 2024\) \\
\hline Version & \\
\hline Status & (new file) \\
\hline Identifier & \\
\hline Client & \\
\hline Jobnumber & \\
\hline Enumerator & ROADPLAN01 jbyrne \\
\hline Description & \\
\hline
\end{tabular}

\section*{Units}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Distance units & Speed units & Traffic units input & Traffic units results & Flow units & Average delay units & Total delay units & Rate of delay units \\
\hline m & kph & Veh & Veh & perHour & s & - Min & perMin \\
\hline
\end{tabular}

\section*{Analysis Options}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Vehicle length \\
\((\mathbf{m})\)
\end{tabular} & \begin{tabular}{c} 
Calculate Queue \\
Percentiles
\end{tabular} & \begin{tabular}{c} 
Calculate detailed queueing \\
delay
\end{tabular} & \begin{tabular}{c} 
Calculate residual \\
capacity
\end{tabular} & \begin{tabular}{c} 
RFC \\
Threshold
\end{tabular} & \begin{tabular}{c} 
Average Delay \\
threshold (s)
\end{tabular} & \begin{tabular}{c} 
Queue threshold \\
(PCU)
\end{tabular} \\
\hline 5.75 & & & & 0.85 & 36.00 & \\
\hline
\end{tabular}

\section*{Demand Set Summary}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline ID & Scenario name & Time Period name & Traffic profile type & Start time (HH:mm) & Finish time (HH:mm) & Time segment length (min) & Run automatically \\
\hline D1 & 2026 with dev & AM & ONE HOUR & \(07: 45\) & \(09: 15\) & 15 & \\
\hline D2 & 2026 with dev & PM & ONE HOUR & \(15: 45\) & \(17: 15\) & 15 & \\
\hline D3 & 2031 with dev & AM & ONE HOUR & \(07: 45\) & \(09: 15\) & 15 & \\
\hline D4 & 2031 with dev & PM & ONE HOUR & \(15: 45\) & \(17: 15\) & 15 & \\
\hline D5 & 2041 with dev & AM & ONE HOUR & \(07: 45\) & \(09: 15\) & 15 & \\
\hline D6 & 2041 with dev & PM & ONE HOUR & \(15: 45\) & \(17: 15\) & \\
\hline
\end{tabular}

\section*{Analysis Set Details}
\begin{tabular}{|c|c|c|c|}
\hline ID & Include in report & Network flow scaling factor (\%) & Network capacity scaling factor (\%) \\
\hline A1 & \(\checkmark\) & 100.000 & 100.000 \\
\hline
\end{tabular}

\section*{2026 with dev, AM}

\section*{Data Errors and Warnings}

No errors or warnings

\section*{Junction Network}

\section*{Junctions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Junction & Name & Junction type & Major road direction & Use circulating lanes & Junction Delay (s) & Junction LOS \\
\hline \(\mathbf{1}\) & untitled & T-Junction & Two-way & & 0.45 & A \\
\hline
\end{tabular}

\section*{Junction Network Options}
\begin{tabular}{|c|c|}
\hline Driving side & Lighting \\
\hline Left & Normal/unknown \\
\hline
\end{tabular}

\section*{Arms}

\section*{Arms}
\begin{tabular}{|c|c|l|l|}
\hline Arm & Name & Description & Arm type \\
\hline A & untitled & & Major \\
\hline B & untitled & & Minor \\
\hline C & untitled & & Major \\
\hline
\end{tabular}

Major Arm Geometry
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Arm & Width of carriageway (m) & Has kerbed central reserve & Has right turn bay & Visibility for right turn (m) & Blocks? & Blocking queue (PCU) \\
\hline C & 6.00 & & & 100.0 & \(\checkmark\) & 0.00 \\
\hline
\end{tabular}

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

\section*{Minor Arm Geometry}
\begin{tabular}{|c|c|c|c|c|}
\hline Arm & Minor arm type & Lane width (m) & Visibility to left (m) & Visibility to right (m) \\
\hline B & One lane & 3.25 & 20 & 20 \\
\hline
\end{tabular}

\section*{Slope / Intercept / Capacity}

Priority Intersection Slopes and Intercepts
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Junction & Stream & \begin{tabular}{c} 
Intercept \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Slope \\
for \\
AB
\end{tabular} & \begin{tabular}{c} 
Slope \\
for \\
AC
\end{tabular} & \begin{tabular}{c} 
Slope \\
for \\
C-A
\end{tabular} & \begin{tabular}{c} 
Slope \\
for \\
C-B
\end{tabular} \\
\hline \(\mathbf{1}\) & B-A & 506 & 0.092 & 0.233 & 0.147 & 0.333 \\
\hline \(\mathbf{1}\) & B-C & 652 & 0.100 & 0.253 & - & - \\
\hline \(\mathbf{1}\) & C-B & 632 & 0.245 & 0.245 & - & - \\
\hline
\end{tabular}

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

\section*{Traffic Demand}

\section*{Demand Set Details}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline ID & Scenario name & Time Period name & Traffic profile type & Start time (HH:mm) & Finish time (HH:mm) & Time segment length (min) & Run automatically \\
\hline D1 & 2026 with dev & AM & ONE HOUR & \(07: 45\) & \(09: 15\) & 15 & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Default vehicle mix & Vehicle mix varies over turn & Vehicle mix varies over entry & Vehicle mix source & PCU Factor for a HV (PCU) \\
\hline\(\checkmark\) & \(\checkmark\) & \(\checkmark\) & HV Percentages & 2.00 \\
\hline
\end{tabular}

Demand overview (Traffic)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arm & Linked arm & Profile type & Use O-D data & Average Demand (Veh/hr) & Scaling Factor (\%) \\
\hline A & & ONE HOUR & \(\checkmark\) & 449 & 100.000 \\
\hline B & & ONE HOUR & \(\checkmark\) & 24 & 100.000 \\
\hline C & & ONE HOUR & \(\checkmark\) & 615 & 100.000 \\
\hline
\end{tabular}

\section*{Origin-Destination Data}

Demand (Veh/hr)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 5 } & A & 0 & 1 & 448 \\
\cline { 2 - 5 } & B & 19 & 0 & 5 \\
\cline { 2 - 6 } & C & 605 & 10 & 0 \\
\hline
\end{tabular}

\section*{Vehicle Mix}

Heavy Vehicle Percentages
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 5 } & A & 10 & 10 & 10 \\
\cline { 2 - 5 } & B & 10 & 10 & 10 \\
\cline { 2 - 5 } & C & 10 & 10 & 10 \\
\hline
\end{tabular}

\section*{Results}

Results Summary for whole modelled period
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream & Max RFC & Max Delay (s) & Max Queue (Veh) & Max LOS & \begin{tabular}{c} 
Average Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Total Junction \\
Arrivals (Veh)
\end{tabular} \\
\hline B-AC & 0.10 & 14.73 & 0.1 & B & 22 & \\
\hline C-AB & 0.04 & 4.54 & 0.1 & \(A\) & 27 & \\
\hline C-A & & & & & 538 & \\
\hline AB & & & & & 1 & 806 \\
\hline AC & & & & 411 & 1 \\
\hline
\end{tabular}

\section*{Main Results for each time segment}

07:45-08:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
\((\) Veh \()\)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 5 & 340 & 0.053 & 18 & 0.0 & 0.1 & 11.185 & \\
\hline C-AB & 17 & 4 & 810 & 0.021 & 17 & 0.0 & 0.0 & 4.538 & A \\
\hline C-A & 446 & 111 & & & 446 & & & & \\
\hline AB & 0.75 & 0.19 & & & 0.75 & & & & \\
\hline AC & 337 & 84 & & & 337 & & & & \\
\hline
\end{tabular}

08:00-08:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 22 & 5 & 311 & 0.069 & 22 & 0.1 & 0.1 & 12.436 & \\
\hline C-AB & 24 & 6 & 861 & 0.028 & 24 & 0.0 & 0.0 & 4.300 & A \\
\hline C-A & 528 & 132 & & & 528 & & & & \\
\hline AB & 0.90 & 0.22 & & & 0.90 & & & & \\
\hline AC & 403 & 101 & & & 403 & & & & \\
\hline
\end{tabular}

08:15-08:30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 26 & 7 & 271 & 0.098 & 26 & 0.1 & 0.1 & 14.711 & B \\
\hline C-AB & 38 & 10 & 935 & 0.041 & 38 & 0.0 & 0.1 & 4.014 & A \\
\hline C-A & 639 & 160 & & & 639 & & & & \\
\hline AB & 1 & 0.28 & & & 1 & & & \\
\hline AC & 493 & 123 & & & 493 & & & & \\
\hline
\end{tabular}

08:30-08:45
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 26 & 7 & 271 & 0.098 & 26 & 0.1 & 0.1 & 14.727 & B \\
\hline C-AB & 38 & 10 & 935 & 0.041 & 38 & 0.1 & 0.1 & 4.016 & A \\
\hline C-A & 639 & 160 & & & 639 & & & & \\
\hline AB & 1 & 0.28 & & & 1 & & & & \\
\hline AC & 493 & 123 & & & 493 & & & & \\
\hline
\end{tabular}

08:45-09:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 22 & 5 & 311 & 0.069 & 22 & 0.1 & 0.1 & 12.455 & B \\
\hline C-AB & 25 & 6 & 862 & 0.028 & 25 & 0.1 & 0.0 & 4.303 & A \\
\hline C-A & 528 & 132 & & & 528 & & & & \\
\hline AB & 0.90 & 0.22 & & & 0.90 & & & & \\
\hline AC & 403 & 101 & & & 403 & & & & \\
\hline
\end{tabular}

09:00-09:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
\((\) Veh \()\)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 5 & 339 & 0.053 & 18 & 0.1 & 0.1 & 11.205 & \\
\hline C-AB & 17 & 4 & 810 & 0.021 & 17 & 0.0 & 0.0 & 4.541 & A \\
\hline C-A & 446 & 111 & & & 446 & & & & \\
\hline AB & 0.75 & 0.19 & & & 0.75 & & & & \\
\hline AC & 337 & 84 & & & 337 & & & & \\
\hline
\end{tabular}

\section*{2026 with dev, PM}

\section*{Data Errors and Warnings}

No errors or warnings

\section*{Junction Network}

\section*{Junctions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Junction & Name & Junction type & Major road direction & Use circulating lanes & Junction Delay (s) & Junction LOS \\
\hline \(\mathbf{1}\) & untitled & T-Junction & Two-way & & 0.72 & A \\
\hline
\end{tabular}

\section*{Junction Network Options}
\begin{tabular}{|c|c|}
\hline Driving side & Lighting \\
\hline Left & Normal/unknown \\
\hline
\end{tabular}

\section*{Traffic Demand}

\section*{Demand Set Details}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline ID & Scenario name & Time Period name & Traffic profile type & Start time (HH:mm) & Finish time (HH:mm) & Time segment length (min) & Run automatically \\
\hline D2 & 2026 with dev & PM & ONE HOUR & \(15: 45\) & \(17: 15\) & 15 & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Default vehicle mix & Vehicle mix varies over turn & Vehicle mix varies over entry & Vehicle mix source & PCU Factor for a HV (PCU) \\
\hline\(\checkmark\) & \(\checkmark\) & \(\checkmark\) & HV Percentages & 2.00 \\
\hline
\end{tabular}

\section*{Demand overview (Traffic)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arm & Linked arm & Profile type & Use O-D data & Average Demand (Veh/hr) & Scaling Factor (\%) \\
\hline A & & ONE HOUR & \(\checkmark\) & 225 & 100.000 \\
\hline B & & ONE HOUR & \(\checkmark\) & 16 & 100.000 \\
\hline C & & ONE HOUR & \(\checkmark\) & 239 & 100.000 \\
\hline
\end{tabular}

\section*{Origin-Destination Data}

Demand (Veh/hr)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 6 } & A & 0 & 2 & 223 \\
\cline { 2 - 5 } & B & 14 & 0 & 2 \\
\cline { 2 - 6 } & C & 217 & 22 & 0 \\
\hline
\end{tabular}

\section*{Vehicle Mix}

Heavy Vehicle Percentages
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 5 } & A & 10 & 10 & 10 \\
\cline { 2 - 5 } & B & 10 & 10 & 10 \\
\cline { 2 - 5 } & C & 10 & 10 & 10 \\
\hline
\end{tabular}

\section*{Results}

Results Summary for whole modelled period
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream & Max RFC & Max Delay (s) & Max Queue (Veh) & Max LOS & \begin{tabular}{c} 
Average Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Total Junction \\
Arrivals (Veh)
\end{tabular} \\
\hline B-AC & 0.05 & 10.08 & 0.0 & B & 15 & 22 \\
\hline C-AB & 0.06 & 5.80 & 0.1 & A & 29 & 44 \\
\hline C-A & & & & & 190 & 285 \\
\hline AB & & & & & 2 & 3 \\
\hline AC & & & & & 205 & 307 \\
\hline
\end{tabular}

\section*{Main Results for each time segment}

15:45-16:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
\((\) Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
\((\) Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
\((\) Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 12 & 3 & 406 & 0.030 & 12 & 0.0 & 0.0 & 9.128 & \\
\hline C-AB & 22 & 6 & 643 & 0.035 & 22 & 0.0 & 0.0 & 5.794 & \\
\hline C-A & 158 & 39 & & & 158 & & & \\
\hline AB & 2 & 0.38 & & & 2 & & & \\
\hline AC & 168 & 42 & & & 168 & & & \\
\hline
\end{tabular}

16:00-16:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 14 & 4 & 393 & 0.037 & 14 & 0.0 & 0.0 & 9.507 & \\
\hline C-AB & 28 & 7 & 657 & 0.043 & 28 & 0.0 & 0.1 & 5.722 & A \\
\hline C-A & 187 & 47 & & & 187 & & & & \\
\hline AB & 2 & 0.45 & & & 2 & & & & \\
\hline AC & 200 & 50 & & & 200 & & & & \\
\hline
\end{tabular}

16:15-16:30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 4 & 375 & 0.047 & 18 & 0.0 & 0.0 & 10.077 & \\
\hline C-AB & 38 & 9 & 678 & 0.055 & 37 & 0.1 & 0.1 & 5.624 & \\
\hline C-A & 226 & 56 & & & 226 & & & \\
\hline AB & 2 & 0.55 & & & 2 & & & \\
\hline AC & 246 & 61 & & & 246 & & & & \\
\hline
\end{tabular}

\section*{16:30-16:45}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
\((\) Veh \()\)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 4 & 375 & 0.047 & 18 & 0.0 & 0.0 & 10.079 & \\
\hline C-AB & 38 & 9 & 678 & 0.055 & 38 & 0.1 & 0.1 & 5.624 & A \\
\hline C-A & 226 & 56 & & & 226 & & & & \\
\hline AB & 2 & 0.55 & & & 2 & & & & \\
\hline AC & 246 & 61 & & & 246 & & & & \\
\hline
\end{tabular}

16:45-17:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 14 & 4 & 393 & 0.037 & 14 & 0.0 & 0.0 & 9.512 & \\
\hline C-AB & 28 & 7 & 657 & 0.043 & 28 & 0.1 & 0.1 & A \\
\hline C-A & 187 & 47 & & & 187 & & & & \\
\hline AB & 2 & 0.45 & & & 2 & & & \\
\hline AC & 200 & 50 & & & 200 & & & \\
\hline
\end{tabular}

17:00-17:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
\((\) Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
\((\mathbf{V e h})\)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 12 & 3 & 406 & 0.030 & 12 & 0.0 & 0.0 & 9.138 & \\
\hline C-AB & 22 & 6 & 643 & 0.035 & 22 & 0.1 & 0.0 & 5.801 & A \\
\hline C-A & 158 & 39 & & & 158 & & & & \\
\hline AB & 2 & 0.38 & & & 2 & & & & \\
\hline AC & 168 & 42 & & & 168 & & & & \\
\hline
\end{tabular}

\section*{2031 with dev, AM}

\section*{Data Errors and Warnings}

No errors or warnings

\section*{Junction Network}

\section*{Junctions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Junction & Name & Junction type & Major road direction & Use circulating lanes & Junction Delay (s) & Junction LOS \\
\hline \(\mathbf{1}\) & untitled & T-Junction & Two-way & & 0.45 & A \\
\hline
\end{tabular}

\section*{Junction Network Options}
\begin{tabular}{|c|c|}
\hline Driving side & Lighting \\
\hline Left & Normal/unknown \\
\hline
\end{tabular}

\section*{Traffic Demand}

\section*{Demand Set Details}
\begin{tabular}{|c|l|c|c|c|c|c|c|}
\hline ID & Scenario name & Time Period name & Traffic profile type & Start time (HH:mm) & Finish time (HH:mm) & Time segment length (min) & Run automatically \\
\hline D3 & 2031 with dev & AM & ONE HOUR & \(07: 45\) & \(09: 15\) & 15 & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Default vehicle mix & Vehicle mix varies over turn & Vehicle mix varies over entry & Vehicle mix source & PCU Factor for a HV (PCU) \\
\hline\(\checkmark\) & \(\checkmark\) & \(\checkmark\) & HV Percentages & 2.00 \\
\hline
\end{tabular}

\section*{Demand overview (Traffic)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arm & Linked arm & Profile type & Use O-D data & Average Demand (Veh/hr) & Scaling Factor (\%) \\
\hline A & & ONE HOUR & \(\checkmark\) & 487 & 100.000 \\
\hline B & & ONE HOUR & \(\checkmark\) & 24 & 100.000 \\
\hline C & & ONE HOUR & \(\checkmark\) & 666 & 100.000 \\
\hline
\end{tabular}

\section*{Origin-Destination Data}

Demand (Veh/hr)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 6 } & A & 0 & 1 & 486 \\
\cline { 2 - 6 } & B & 19 & 0 & 5 \\
\cline { 2 - 6 } & C & 656 & 10 & 0 \\
\hline
\end{tabular}

\section*{Vehicle Mix}

Heavy Vehicle Percentages
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 5 } & A & 10 & 10 & 10 \\
\cline { 2 - 5 } & B & 10 & 10 & 10 \\
\cline { 2 - 5 } & C & 10 & 10 & 10 \\
\hline
\end{tabular}

\section*{Results}

Results Summary for whole modelled period
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream & Max RFC & Max Delay (s) & Max Queue (Veh) & Max LOS & \begin{tabular}{c} 
Average Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Total Junction \\
Arrivals (Veh)
\end{tabular} \\
\hline B-AC & 0.10 & 15.93 & 0.1 & C & 22 & \\
\hline C-AB & 0.04 & 4.42 & 0.1 & A & 33 \\
\hline C-A & & & & & 582 & 44 \\
\hline AB & & & & & 1 & 872 \\
\hline AC & & & & 446 & 1 \\
\hline
\end{tabular}

\section*{Main Results for each time segment}

07:45-08:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 18 & 5 & 327 & 0.055 & 18 & 0.0 & 0.1 & 11.624 & B \\
\hline C-AB & 19 & 5 & 832 & 0.022 & 18 & 0.0 & 0.0 & 4.423 & A \\
\hline C-A & 483 & 121 & & & 483 & & & & \\
\hline AB & 0.75 & 0.19 & & & 0.75 & & & & \\
\hline AC & 366 & 91 & & & 366 & & & & \\
\hline
\end{tabular}

08:00-08:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 22 & 5 & 296 & 0.073 & 21 & 0.1 & 0.1 & 13.101 & B \\
\hline C-AB & 27 & 7 & 889 & 0.030 & 27 & 0.0 & 0.0 & 4.176 & A \\
\hline C-A & 572 & 143 & & & 572 & & & & \\
\hline AB & 0.90 & 0.22 & & & 0.90 & & & & \\
\hline AC & 437 & 109 & & & 437 & & & & \\
\hline
\end{tabular}

08:15-08:30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 26 & 7 & 252 & 0.105 & 26 & 0.1 & 0.1 & 15.904 & C \\
\hline C-AB & 43 & 11 & 970 & 0.045 & 43 & 0.0 & 0.1 & 3.884 & A \\
\hline C-A & 690 & 172 & & & 690 & & & & \\
\hline AB & 1 & 0.28 & & & 1 & & & & \\
\hline AC & 535 & 134 & & & 535 & & & & \\
\hline
\end{tabular}

08:30-08:45
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 26 & 7 & 252 & 0.105 & 26 & 0.1 & 0.1 & 15.926 & C \\
\hline C-AB & 43 & 11 & 970 & 0.045 & 43 & 0.1 & 0.1 & 3.885 & A \\
\hline C-A & 690 & 172 & & & 690 & & & & \\
\hline AB & 1 & 0.28 & & & 1 & & & & \\
\hline AC & 535 & 134 & & & 535 & & & & \\
\hline
\end{tabular}

08:45-09:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 22 & 5 & 296 & 0.073 & 22 & 0.1 & 0.1 & 13.126 & \\
\hline C-AB & 27 & 7 & 889 & 0.030 & 27 & 0.1 & 0.0 & 4.177 & A \\
\hline C-A & 572 & 143 & & & 572 & & & & \\
\hline AB & 0.90 & 0.22 & & & 0.90 & & & & \\
\hline AC & 437 & 109 & & & 437 & & & & \\
\hline
\end{tabular}

09:00-09:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 5 & 327 & 0.055 & 18 & 0.1 & 0.1 & 11.650 & \\
\hline C-AB & 19 & 5 & 832 & 0.022 & 19 & 0.0 & 0.0 & 4.424 & \\
\hline C-A & 483 & 121 & & & 483 & & & \\
\hline AB & 0.75 & 0.19 & & & 0.75 & & & \\
\hline AC & 366 & 91 & & & 366 & & & & \\
\hline
\end{tabular}

\section*{2031 with dev, PM}

\section*{Data Errors and Warnings}

No errors or warnings

\section*{Junction Network}

\section*{Junctions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Junction & Name & Junction type & Major road direction & Use circulating lanes & Junction Delay (s) & Junction LOS \\
\hline \(\mathbf{1}\) & untitled & T-Junction & Two-way & & 0.69 & A \\
\hline
\end{tabular}

\section*{Junction Network Options}
\begin{tabular}{|c|c|}
\hline Driving side & Lighting \\
\hline Left & Normal/unknown \\
\hline
\end{tabular}

\section*{Traffic Demand}

\section*{Demand Set Details}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline ID & Scenario name & Time Period name & Traffic profile type & Start time (HH:mm) & Finish time (HH:mm) & Time segment length (min) & Run automatically \\
\hline D4 & 2031 with dev & PM & ONE HOUR & \(15: 45\) & \(17: 15\) & 15 & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Default vehicle mix & Vehicle mix varies over turn & Vehicle mix varies over entry & Vehicle mix source & PCU Factor for a HV (PCU) \\
\hline\(\checkmark\) & \(\checkmark\) & \(\checkmark\) & HV Percentages & 2.00 \\
\hline
\end{tabular}

\section*{Demand overview (Traffic)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arm & Linked arm & Profile type & Use O-D data & Average Demand (Veh/hr) & Scaling Factor (\%) \\
\hline A & & ONE HOUR & \(\checkmark\) & 244 & 100.000 \\
\hline B & & ONE HOUR & \(\checkmark\) & 16 & 100.000 \\
\hline C & & ONE HOUR & \(\checkmark\) & 257 & 100.000 \\
\hline
\end{tabular}

\section*{Origin-Destination Data}

Demand (Veh/hr)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 6 } & A & 0 & 2 & 242 \\
\cline { 2 - 5 } & B & 14 & 0 & 2 \\
\cline { 2 - 6 } & C & 235 & 22 & 0 \\
\hline
\end{tabular}

\section*{Vehicle Mix}

Heavy Vehicle Percentages
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 5 } & A & 10 & 10 & 10 \\
\cline { 2 - 5 } & B & 10 & 10 & 10 \\
\cline { 2 - 5 } & C & 10 & 10 & 10 \\
\hline
\end{tabular}

\section*{Results}

Results Summary for whole modelled period
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream & Max RFC & Max Delay (s) & Max Queue (Veh) & Max LOS & \begin{tabular}{c} 
Average Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Total Junction \\
Arrivals (Veh)
\end{tabular} \\
\hline B-AC & 0.05 & 10.30 & 0.1 & B & 15 & 22 \\
\hline C-AB & 0.06 & 5.75 & 0.1 & A & 30 & 45 \\
\hline C-A & & & & & 206 & 308 \\
\hline AB & & & & & 2 & 3 \\
\hline AC & & & & & 222 & 333 \\
\hline
\end{tabular}

\section*{Main Results for each time segment}

15:45-16:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 12 & 3 & 401 & 0.030 & 12 & 0.0 & 0.0 & 9.251 & A \\
\hline C-AB & 23 & 6 & 649 & 0.035 & 23 & 0.0 & 0.0 & 5.744 & A \\
\hline C-A & 171 & 43 & & & 171 & & & & \\
\hline AB & 2 & 0.38 & & & 2 & & & & \\
\hline AC & 182 & 46 & & & 182 & & & & \\
\hline
\end{tabular}

16:00-16:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 14 & 4 & 387 & 0.037 & 14 & 0.0 & 0.0 & 9.668 & A \\
\hline C-AB & 29 & 7 & 665 & 0.044 & 29 & 0.0 & 0.1 & 5.664 & A \\
\hline C-A & 202 & 50 & & & 202 & & & & \\
\hline AB & 2 & 0.45 & & & 2 & & & & \\
\hline AC & 218 & 54 & & & 218 & & & & \\
\hline
\end{tabular}

16:15-16:30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 4 & 367 & 0.048 & 18 & 0.0 & 0.0 & 10.300 & \\
\hline C-AB & 39 & 10 & 687 & 0.057 & 39 & 0.1 & 0.1 & 5.556 & A \\
\hline C-A & 244 & 61 & & & 244 & & & & \\
\hline AB & 2 & 0.55 & & & 2 & & & & \\
\hline AC & 266 & 67 & & & 266 & & & & \\
\hline
\end{tabular}

16:30-16:45
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
\((\mathbf{V e h} / \mathbf{h r})\)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
\((\) Veh \()\)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 4 & 367 & 0.048 & 18 & 0.0 & 0.1 & 10.302 & \\
\hline C-AB & 39 & 10 & 687 & 0.057 & 39 & 0.1 & 0.1 & 5.556 & A \\
\hline C-A & 244 & 61 & & & 244 & & & & \\
\hline AB & 2 & 0.55 & & & 2 & & & & \\
\hline AC & 266 & 67 & & & 266 & & & & \\
\hline
\end{tabular}

16:45-17:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 14 & 4 & 387 & 0.037 & 14 & 0.1 & 0.0 & 9.673 & \\
\hline C-AB & 29 & 7 & 665 & 0.044 & 29 & 0.1 & 0.1 & 5.665 & A \\
\hline C-A & 202 & 50 & & & 202 & & & & \\
\hline AB & 2 & 0.45 & & & 2 & & & & \\
\hline AC & 218 & 54 & & & 218 & & & & \\
\hline
\end{tabular}

17:00-17:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 12 & 3 & 401 & 0.030 & 12 & 0.0 & 0.0 & 9.260 & \\
\hline C-AB & 23 & 6 & 649 & 0.035 & 23 & 0.1 & 0.0 & 5.748 & A \\
\hline C-A & 171 & 43 & & & 171 & & & & \\
\hline AB & 2 & 0.38 & & & 2 & & & & \\
\hline AC & 182 & 46 & & & 182 & & & & \\
\hline
\end{tabular}

\section*{2041 with dev, AM}

\section*{Data Errors and Warnings}

No errors or warnings

\section*{Junction Network}

\section*{Junctions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Junction & Name & Junction type & Major road direction & Use circulating lanes & Junction Delay (s) & Junction LOS \\
\hline \(\mathbf{1}\) & untitled & T-Junction & Two-way & & 0.45 & A \\
\hline
\end{tabular}

\section*{Junction Network Options}
\begin{tabular}{|c|c|}
\hline Driving side & Lighting \\
\hline Left & Normal/unknown \\
\hline
\end{tabular}

\section*{Traffic Demand}

\section*{Demand Set Details}
\begin{tabular}{|c|l|c|c|c|c|c|c|}
\hline ID & Scenario name & Time Period name & Traffic profile type & Start time (HH:mm) & Finish time (HH:mm) & Time segment length (min) & Run automatically \\
\hline D5 & 2041 with dev & AM & ONE HOUR & \(07: 45\) & \(09: 15\) & 15 & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Default vehicle mix & Vehicle mix varies over turn & Vehicle mix varies over entry & Vehicle mix source & PCU Factor for a HV (PCU) \\
\hline\(\checkmark\) & \(\checkmark\) & \(\checkmark\) & HV Percentages & 2.00 \\
\hline
\end{tabular}

\section*{Demand overview (Traffic)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arm & Linked arm & Profile type & Use O-D data & Average Demand (Veh/hr) & Scaling Factor (\%) \\
\hline A & & ONE HOUR & \(\checkmark\) & 496 & 100.000 \\
\hline B & & ONE HOUR & \(\checkmark\) & 24 & 100.000 \\
\hline C & & ONE HOUR & \(\checkmark\) & 679 & 100.000 \\
\hline
\end{tabular}

\section*{Origin-Destination Data}

Demand (Veh/hr)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 6 } & A & 0 & 1 & 495 \\
\cline { 2 - 5 } & B & 19 & 0 & 5 \\
\cline { 2 - 6 } & C & 669 & 10 & 0 \\
\hline
\end{tabular}

\section*{Vehicle Mix}

Heavy Vehicle Percentages
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 5 } & A & 10 & 10 & 10 \\
\cline { 2 - 5 } & B & 10 & 10 & 10 \\
\cline { 2 - 5 } & C & 10 & 10 & 10 \\
\hline
\end{tabular}

\section*{Results}

Results Summary for whole modelled period
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream & Max RFC & Max Delay (s) & Max Queue (Veh) & Max LOS & \begin{tabular}{c} 
Average Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Total Junction \\
Arrivals (Veh)
\end{tabular} \\
\hline B-AC & 0.11 & 16.25 & 0.1 & C & 22 & \\
\hline C-AB & 0.05 & 4.39 & 0.1 & A & 33 \\
\hline C-A & & & & & 593 & 46 \\
\hline AB & & & & & 1 & 889 \\
\hline AC & & & & 454 & 1 \\
\hline
\end{tabular}

\section*{Main Results for each time segment}

07:45-08:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 18 & 5 & 324 & 0.056 & 18 & 0.0 & 0.1 & 11.738 & B \\
\hline C-AB & 19 & 5 & 838 & 0.023 & 19 & 0.0 & 0.0 & 4.394 & A \\
\hline C-A & 492 & 123 & & & 492 & & & & \\
\hline AB & 0.75 & 0.19 & & & 0.75 & & & & \\
\hline AC & 373 & 93 & & & 373 & & & & \\
\hline
\end{tabular}

08:00-08:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 22 & 5 & 293 & 0.074 & 21 & 0.1 & 0.1 & 13.276 & B \\
\hline C-AB & 27 & 7 & 896 & 0.031 & 27 & 0.0 & 0.0 & 4.145 & A \\
\hline C-A & 583 & 146 & & & 583 & & & & \\
\hline AB & 0.90 & 0.22 & & & 0.90 & & & & \\
\hline AC & 445 & 111 & & & 445 & & & & \\
\hline
\end{tabular}

08:15-08:30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 26 & 7 & 248 & 0.107 & 26 & 0.1 & 0.1 & 16.228 & \\
\hline C-AB & 45 & 11 & 979 & 0.046 & 45 & 0.0 & 0.1 & C \\
\hline C-A & 703 & 176 & & & 703 & & & & \\
\hline AB & 1 & 0.28 & & & 1 & & & \\
\hline AC & 545 & 136 & & & 545 & & & & \\
\hline
\end{tabular}

08:30-08:45
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 26 & 7 & 248 & 0.107 & 26 & 0.1 & 0.1 & 16.251 & \\
\hline C-AB & 45 & 11 & 979 & 0.046 & 45 & 0.1 & 0.1 & C \\
\hline C-A & 703 & 176 & & & 703 & & & \\
\hline AB & 1 & 0.28 & & & 1 & & & \\
\hline AC & 545 & 136 & & & 545 & & & \\
\hline
\end{tabular}

08:45-09:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & Delay (s) & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 22 & 5 & 293 & 0.074 & 22 & 0.1 & 0.1 & 13.302 & B \\
\hline C-AB & 28 & 7 & 896 & 0.031 & 28 & 0.1 & 0.0 & 4.146 & A \\
\hline C-A & 583 & 146 & & & 583 & & & & \\
\hline AB & 0.90 & 0.22 & & & 0.90 & & & & \\
\hline AC & 445 & 111 & & & 445 & & & & \\
\hline
\end{tabular}

09:00-09:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 18 & 5 & 324 & 0.056 & 18 & 0.1 & 0.1 & 11.764 & \\
\hline C-AB & 19 & 5 & 838 & 0.023 & 19 & 0.0 & 0.0 & 4.395 & \\
\hline C-A & 492 & 123 & & & 492 & & & \\
\hline AB & 0.75 & 0.19 & & & 0.75 & & & \\
\hline AC & 373 & 93 & & & 373 & & & & \\
\hline
\end{tabular}

\section*{2041 with dev, PM}

\section*{Data Errors and Warnings}

No errors or warnings

\section*{Junction Network}

\section*{Junctions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Junction & Name & Junction type & Major road direction & Use circulating lanes & Junction Delay (s) & Junction LOS \\
\hline \(\mathbf{1}\) & untitled & T-Junction & Two-way & & 0.68 & A \\
\hline
\end{tabular}

\section*{Junction Network Options}
\begin{tabular}{|c|c|}
\hline Driving side & Lighting \\
\hline Left & Normal/unknown \\
\hline
\end{tabular}

\section*{Traffic Demand}

\section*{Demand Set Details}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline ID & Scenario name & Time Period name & Traffic profile type & Start time (HH:mm) & Finish time (HH:mm) & Time segment length (min) & Run automatically \\
\hline D6 & 2041 with dev & PM & ONE HOUR & \(15: 45\) & \(17: 15\) & 15 & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Default vehicle mix & Vehicle mix varies over turn & Vehicle mix varies over entry & Vehicle mix source & PCU Factor for a HV (PCU) \\
\hline\(\checkmark\) & \(\checkmark\) & \(\checkmark\) & HV Percentages & 2.00 \\
\hline
\end{tabular}

\section*{Demand overview (Traffic)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arm & Linked arm & Profile type & Use O-D data & Average Demand (Veh/hr) & Scaling Factor (\%) \\
\hline A & & ONE HOUR & \(\checkmark\) & 248 & 100.000 \\
\hline B & & ONE HOUR & \(\checkmark\) & 16 & 100.000 \\
\hline C & & ONE HOUR & \(\checkmark\) & 262 & 100.000 \\
\hline
\end{tabular}

\section*{Origin-Destination Data}

Demand (Veh/hr)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 6 } & A & 0 & 2 & 246 \\
\cline { 2 - 5 } & B & 14 & 0 & 2 \\
\cline { 2 - 6 } & C & 240 & 22 & 0 \\
\hline
\end{tabular}

\section*{Vehicle Mix}

Heavy Vehicle Percentages
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ To } \\
\hline \multirow{4}{*}{ From } & & A & B & C \\
\cline { 2 - 5 } & A & 10 & 10 & 10 \\
\cline { 2 - 5 } & B & 10 & 10 & 10 \\
\cline { 2 - 5 } & C & 10 & 10 & 10 \\
\hline
\end{tabular}

\section*{Results}

Results Summary for whole modelled period
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stream & Max RFC & Max Delay (s) & Max Queue (Veh) & Max LOS & \begin{tabular}{c} 
Average Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Total Junction \\
Arrivals (Veh)
\end{tabular} \\
\hline B-AC & 0.05 & 10.36 & 0.1 & B & 15 & 22 \\
\hline C-AB & 0.06 & 5.73 & 0.1 & A & 31 & 46 \\
\hline C-A & & & & & 210 & 315 \\
\hline AB & & & & & 2 & 3 \\
\hline AC & & & & & 226 & 339 \\
\hline
\end{tabular}

\section*{Main Results for each time segment}

15:45-16:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 12 & 3 & 400 & 0.030 & 12 & 0.0 & 0.0 & 9.280 & A \\
\hline C-AB & 23 & 6 & 651 & 0.035 & 23 & 0.0 & 0.0 & 5.728 & A \\
\hline C-A & 174 & 44 & & & 174 & & & & \\
\hline AB & 2 & 0.38 & & & 2 & & & & \\
\hline AC & 185 & 46 & & & 185 & & & & \\
\hline
\end{tabular}

16:00-16:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 14 & 4 & 385 & 0.037 & 14 & 0.0 & 0.0 & 9.707 & A \\
\hline C-AB & 29 & 7 & 667 & 0.044 & 29 & 0.0 & 0.1 & 5.643 & A \\
\hline C-A & 206 & 52 & & & 206 & & & & \\
\hline AB & 2 & 0.45 & & & 2 & & & & \\
\hline AC & 221 & 55 & & & 221 & & & & \\
\hline
\end{tabular}

16:15-16:30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 18 & 4 & 365 & 0.048 & 18 & 0.0 & 0.1 & 10.353 & B \\
\hline C-AB & 39 & 10 & 690 & 0.057 & 39 & 0.1 & 0.1 & 5.535 & A \\
\hline C-A & 249 & 62 & & & 249 & & & & \\
\hline AB & 2 & 0.55 & & & 2 & & & & \\
\hline AC & 271 & 68 & & & 271 & & & & \\
\hline
\end{tabular}

16:30-16:45
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & Total Demand (Veh/hr) & Junction Arrivals (Veh) & Capacity (Veh/hr) & RFC & Throughput (Veh/hr) & Start queue (Veh) & End queue (Veh) & Delay (s) & Unsignalised level of service \\
\hline B-AC & 18 & 4 & 365 & 0.048 & 18 & 0.1 & 0.1 & 10.356 & B \\
\hline C-AB & 39 & 10 & 690 & 0.057 & 39 & 0.1 & 0.1 & 5.537 & A \\
\hline C-A & 249 & 62 & & & 249 & & & & \\
\hline AB & 2 & 0.55 & & & 2 & & & & \\
\hline AC & 271 & 68 & & & 271 & & & & \\
\hline
\end{tabular}

16:45-17:00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 14 & 4 & 385 & 0.037 & 14 & 0.1 & 0.0 & 9.712 & \\
\hline C-AB & 29 & 7 & 667 & 0.044 & 29 & 0.1 & 0.1 & 5.646 & A \\
\hline C-A & 206 & 52 & & & 206 & & & & \\
\hline AB & 2 & 0.45 & & & 2 & & & & \\
\hline AC & 221 & 55 & & & 221 & & & & \\
\hline
\end{tabular}

17:00-17:15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Stream & \begin{tabular}{c} 
Total Demand \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Junction \\
Arrivals (Veh)
\end{tabular} & \begin{tabular}{c} 
Capacity \\
(Veh/hr)
\end{tabular} & RFC & \begin{tabular}{c} 
Throughput \\
(Veh/hr)
\end{tabular} & \begin{tabular}{c} 
Start queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
End queue \\
(Veh)
\end{tabular} & \begin{tabular}{c} 
Delay (s)
\end{tabular} & \begin{tabular}{c} 
Unsignalised \\
level of service
\end{tabular} \\
\hline B-AC & 12 & 3 & 400 & 0.030 & 12 & 0.0 & 0.0 & 9.289 & \\
\hline C-AB & 23 & 6 & 651 & 0.035 & 23 & 0.1 & 0.0 & 5.735 & A \\
\hline C-A & 174 & 44 & & & 174 & & & & \\
\hline AB & 2 & 0.38 & & & 2 & & & & \\
\hline AC & 185 & 46 & & & 185 & & & & \\
\hline
\end{tabular}

\section*{Appendix J - SUDS / Green Infrastructure Feasibility Checklist}
\begin{tabular}{|c|c|c|}
\hline SuDS Measures & Measures to be used on this site & Rationale for selecting/not selecting measure \\
\hline \multicolumn{3}{|l|}{Source Control} \\
\hline Swales & N & There is limited suitable space within the site for same. \\
\hline Tree Pits & Y & Tree pits will be included in landscape design. Not included in the SuDs calculations, given the poor infiltration rate on site, but they will contribute. \\
\hline Rainwater Butts & TBC & Usage will be reviewed with architect and client. \\
\hline Rainwater harvesting & TBC & Will be reviewed with the architect and client to see if it is a viable option. \\
\hline Soakaways & N & Not viable due to impermeable ground conditions \\
\hline Infiltration trenches & N & Not required. \\
\hline Permeable pavement & N & Permeable surfacing will not be provided to allow infiltration directly to the ground due to the impermeable ground conditions. \\
\hline Green Roofs & N & Not viable due to nature of development \\
\hline Filter strips & N & Filter strips maybe included in landscape design. Not included in the SuDs calculations, due to the impermeable ground conditions, but they will contribute. \\
\hline Bio-retention systems/Raingardens & Y & Raingardens may be included in landscape design. Not included in the SuDs calculations, due to the impermeable ground conditions, but they will contribute in a small way. \\
\hline Blue Roofs & N & Not cost effective over the lifespan due to maintenance. \\
\hline Filter Drain & N & Not currently proposed. \\
\hline Site Control & & \\
\hline Detention Basins & N & No available room on site for large bodies of water and poses a potential drowning hazard. \\
\hline Retentions basins & N & No available room on site for large bodies of water and poses a potential drowning hazard. \\
\hline \multicolumn{3}{|l|}{Regional Control} \\
\hline Ponds & N & No available room on site for large bodies of water and poses a potential drowning hazard \\
\hline Wetlands & N & No available room on site for large bodies of water and poses a potential drowning hazard. \\
\hline \multicolumn{3}{|l|}{Other} \\
\hline Petrol/Oil interceptor & Y & Included in overall drainage design \\
\hline Attenuation tank - only as a last resort where other measures are not feasible & Y & Provided on site. Site storage for 1/100 storm \(+20 \%\) climate change with hydrobrake connection to mains. \\
\hline
\end{tabular}

\section*{Appendix K - DMURS Statement of Consistency}


\section*{DMURS Statement of Consistency}

For

\section*{Development at Ballymakenny Road, Drogheda, Co. Louth \\ Louth County Council,}


\section*{Contents}
1. Introduction
2. Smarter Travel
3. Creating a Better Environment
4. Key Design Principles
5. Conclusion

\section*{DOCUMENT CONTROL SHEET}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Client & \multicolumn{8}{|l|}{Louth County Council} \\
\hline & Project Title & \multicolumn{8}{|l|}{Development at Ballymakenny, Community Facilities \& Associated Works via Modern Methods of Construction} \\
\hline & Project Ref. & \multicolumn{8}{|l|}{23D047} \\
\hline & Document Title & \multicolumn{8}{|l|}{DMURS Statement of Consistency} \\
\hline & Document No. & \multicolumn{8}{|l|}{23D047} \\
\hline & \multirow[t]{2}{*}{This Document Comprises} & DCS & PD & TOC & Text & - & & & Appendices \\
\hline & & 1 & - & 1 & 5 & & & & 0 \\
\hline & Check & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Revision & Status & Author & Reviewed By & Approved By & Issue Dates \\
\hline P & S 179 A & RM & LM & DH & April 2024 \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{1. Introduction}

Hayes Higgins Partnership has been commissioned to prepare a DMURS Statement of Consistency alongside a Civil Engineering Services Report for the proposed development at Ballymakenny Road, Drogheda, County Louth.

The site is located to the north of Drogheda town centre in County Louth. The existing site is a greenfield site \& is zoned A2 New residential Phase 1 in the Louth County Development Plan.

The site is bound by hedgerow and a precast concrete fence to the west. There is a commercial and industrial site to the North that is bound by a steel palisade fence and a greenfield site to the north west that is bound by hedgerow. The site is bound to the east by Ballymakenny Road and to the south by a boundary wall of a residential estate. Resident car parking is provided within the site.

An objective of the current Louth County Council Development Plan is to 'focus on creating places where people want to live and delivering well designed and located housing that is adaptable and resilient to the impacts of climate change and capable of meeting the current and future housing needs of the County' (LCDP 2021-2027, Volume 1, Chapter 3 - Housing)

The proposed development will comprise the construction of 97no. houses including 12no. 2-bed bungalows, 40no. two storey 2-bed houses, 30no. two storey 3-bed houses, 13no. two storey 4-bed houses, and 2 no. 3-bed bungalows on a site of c. 3.03 hectares in the townland of Yellowbatter at Ballymakenny Road, Drogheda, Co Louth.

The development will also include the construction of a new entrance onto the Ballymakenny Road; provision of new cycleway, footpath, and public lighting along the Ballymakenny Road; new estate roads and homezones within the site; 120no. car parking spaces including both on-street and in-curtilage parking: cycle parking; hard and soft landscaping including public open spaces, playground, and private gardens; boundary treatments; ESB substation; lighting; laying of underground sewers, mains and pipes; underground pump station and attenuation tanks; and all associated works.

The proposed development will utilise existing services in the vicinity of the site.

The objective of DMURS is 'to put well-designed streets at the heart of communities' (DMURS, 2019) 'Well designed streets can create connected physical, social and transport networks that promote real alternatives to car journeys, namely walking, cycling or public transport' (DMURS, 2019)

The aim of DMURS is to encourage a more sustainable approach to network design and to better the experience of all road users, through reduction is traffic speeds, encourage non-motorised traffic, and
essentially healthier environments and communities., thereby providing safe, attractive \& comfortable streets for all users.

\section*{2. Smarter Travel}

Smarter Travel - A Sustainable Transport Future -A New Transport Policy for Ireland 2009-2020, sets out five (5) key goals:
a. To reduce overall travel demand
b. To maximise the efficiency of transport network
c. To reduce reliance on fossil fuels
d. To reduce transport emissions
e. To improve accessibility to public transport

Planning Guidelines: Local Area Plans 2013
For local area plans focused on meeting the needs of communities in newly developing areas, the emphasis should be on:
- providing compact, walkable neighbourhoods incorporating a variety of house types with mixed tenure;
- providing conveniently-located neighbourhood facilities commensurate with projected population, including playground/play areas;
- providing a mix of residential and commercial uses with adequate local employment opportunities;
- designing in active streets and designing out anti-social behaviour through urban master planning, encouraging good mixture of uses and adaptability of buildings; and
- measures to encourage local people to adopt healthier, smarter ways to travel around their local communities, especially walking and cycling.

Louth County Development Plan 2021-2027
Strategic Objective SO 15
Ensure the proper integration of transportation and land use planning through the increased use of sustainable transport modes and the minimisation of travel demand to achieve a sustainable, integrated and low carbon transport system with excellent connectivity both within and beyond the County.

Strategic Objective SO 17
Facilitate the development of infrastructural projects, which will underpin sustainable development throughout the County during the period of the Plan.

Housing Policy Objective HOU 3
To support the delivery of social housing in Louth in accordance with the Council's Social Housing Delivery Programme and Government Policy as set out in Rebuilding Ireland: Action Plan for Housing and Homelessness.

Movement Policy Objective MOV 06
To promote and support the principles of universal design ensuring that all environments are inclusive and are accessible to and can be used to the fullest extent possible by all users regardless of age, ability or disability.

The concept of smarter travel is further exemplified through the 'Principles for Quality Design and Layout' such as 'Placemaking'. 'The design approach aims to add value to a development. This takes account of the location, character, topography, history and any other issues that have
shaped the area in which a development is located.' Chapter 3, Housing, Louth County Development Plan, 2021-2027

\section*{3. Creating A Better Environment}

UK manual for streets (2007) - detail principles that should influence layout and design of streets principles include:
a. Connectivity and permeability
b. Sustainability
c. Safety
d. Legibility
e. Sense of place

The basic concepts of DMURS are identified through the following principles, namely
i. Connectivity - ' A core objective of a segregated approach to street design is the creation of a highly functional traffic network'
ii. Comfort
iii. Active Edge and
iv. Pedestrian Facilities

\section*{i. Connectivity}

DMURS provides guidance on the hierarchy of needs of pedestrians, cyclists, public transport and private vehicles.

The attached image from DMURS shows the prioritisation of considerations.

The Ballymakenny Road development proposed plan aligns with consideration of pedestrians throughout the residential estate, ensuring that connectivity is provided to the main road via different access routes, through intended newly constructed pedestrian walkways and links, as well as dropped kerbs and tactile paving to assist with the movement of visually impaired persons.

Although the site is not within immediate connection to any bus routes, access is provided for easy access to link roads for bus routes.


Figure 2.21: User hierarchy that promotes and prionitises sustainable forms of transportation

The proposed residential development has been thoughtfully designed to accommodate and promote inter-connectivity between all modes of movements, with a strong leaning towards pedestrian movements, especially noted in the movements across the residential estate.

There is one main road and vehicle access to the residential estate as per accompanying layout and drawings. Through-access roads have been avoided where possible to reduce traffic speed and 'passing-through' traffic. Horizontally straight roads have been accompanied by chicanes and speed humps to reduce the speed of traffic within the residential estate.

The proposed residential development abides by the principle of integrated and non-segregated connectivity of DMURS.

Comfort
The traffic facilities have been designed to allow for best usage of movement, through adequate pedestrian walkway, cycleway and road widths, along with appropriate turning radii. Footpaths and cycle paths have been kept clear of roadside furniture and clutter which would impede or impair the free flow movement of traffic. Where possible, throughout the site, careful thought has provided non-isolating walkways ensuring persons have freedom of movement. The use of landscaping techniques and layout ensure the inclusivity of all road users and the encouragement of free movement within the designated areas.
iii. Active Edge

The residential units each have access to the road, enlivening the frontage of the homes and access, with incorporated cul-de-sacs providing a sense of bounded communities.
iv. Pedestrian Facilities

The proposed residential development has been designed to facilitate and enhance pedestrian movement and connectivity, allowing all units to have direct access to pedestrian facilities and equally providing surveillance and openness of the footpaths increasing the sense of security and safety.

The development has some speed reducing elements incorporated into the design, such as chicanes, slight bends and speed humps as traffic calming facilities, and the development will likely have a \(30 \mathrm{~km} / \mathrm{h}\) speed limit..

The pedestrian facilities are 1.8 m wide, providing adequate passing space for two persons passing one another comfortably.

DMURS guidelines provides 1.8 m to 2.5 m widths for areas of low pedestrian activity and moderate pedestrian activity respectively. A 1.8 m footpath is most suitable and feasible for the proposed residential development.

The footpath for the proposed residential development provides interconnectivity throughout the estate and access to the main network in the area, providing suitable and comfortable access to the transport links, retail and healthcare facilifies.

Cyclepaths are also provided along the existing road, ensuring dedicated cycle lanes and widths of 2.0 m , establishing a fully integrated network for cyclists, encouraging the usage of such means of transportation.

\section*{4. DMURS Design Principles from DMURS 2019 2.2.3 (Key Design Principles)}

DMURS gives insight into the four core principles towards a balanced approach to road and street design. The four principles are
i. Connected Networks
ii. Multi-Functional Streets
iii. Pedestrian Focus
iv. Multidisciplinary Approach
i. Design Principle - Connected Networks

The proposed development consists of a few local streets which provide access to the dwellings, and throughout the design, careful consideration has been carried out to allow for the greatest connectivity between pedestrians and cyclists, promoting the different modes of transportation and reducing the usage of motorised transportation.

Design Principle 1
To support the creation of integrated street networks which promote higher levels of permeability and legibility for all users, and in particular more sustainable forms of transport.

Chapter 3 of this Manual is concerned with the creation and management of permeable and legible street networks.


The proposed development is well-connected to the local road network, and allow for the ease of access between individuals and main roads.

The main point of entry / exit into the site is well demarcated and as provides a positive gateway and means of notification to all users and drivers, of the change of conditions, speeds etc.
ii. Design Principle - Multi-functional Streets

The roads, streets and proposed development layout have considered future potential development and networks to the east of the second field and a hierarchical approach to the design with the DMURS principles increasing the attractiveness of usage for pedestrians and vehicles.

A series of raised pedestrian crossings will also be accommodated into the site, to allow for enhanced flow of pedestrians, reduced traffic speeds and inclusivity of all persons within the residential estate.

Open spaces are also incorporated into the design ensuring the there are sufficient buffer zones to noise, providing areas of calm and enhancing the visibility of the proposed estate. Incorporated footpaths provide cross site links and multifunctional usage, creating balance between all users and residents, creating a facilitated movements.

\section*{iii. Design Principle 3 - Pedestrian Focus}

The pedestrian focus of the proposed development design, encourages connectivity throughout the site, heavily focused on pedestrians, along all lines of access.

The encompassing design provides an integrated sense of community and connectivity, providing passive observation of all persons within the estate and increased sense of safety and security.

Design Principle 2:
The promotion of multi-functional, placebased streets that balance the needs of all users within a self-regulating environment.

Chapter 4 of this Manual is concerned with the creation of self-regulating streets that cater for the various place and movement functions of a street.


Design Principle 3:

The quality of the street is measured by the quality of the pedestrian environment.

Chapter 4 of this Manual also provides design standards for the creation of a safe, comfortable and attractive pedestrian environment.

iv. Design Principle 4 - Multidisciplinary Approach

The design of the proposed development, has been developed through the incorporated workmanship of the design team, comprising of eml Architects, Ait Landscape Architects, working together with Hayes Higgins Partnership Consulting Civil and Structural Engineers, providing civil, structural, environmental and mechanical and electrical engineering collaborative approach to the highest standards of design and development of the proposal for the residential estate, that complies with the DMURS recommendations.

Design Principle 4

Greater communication and co-operation between design professionals through the promotion of a plan-led, multidisciplinary approach to design.

Chapter 5 of this Manual is concerned with the implementation of a more integrated approach to street design


\section*{5. Conclusion}

Hayes Higgins Partnership, Consulting Engineers were appointed by Louth County Council to provide Civil and Structural, Mechanical and Electrical and Environmental advice for the proposed residential development at Ballymakenny Road, Drogheda, Louth County.

The report aims to demonstrate that the proposed residential development achieves the objectives described in DMURS, in co-ordination with the client, various designers and consultants to encourage the use of non-motorised modes of transportation over the use of private vehicles.

With regard to the aforementioned, the proposed development is in keeping with the guidelines and objectives for the Design of Urban Roads and Streets.```


[^0]:    | Material description : | slightly sandy slightly gravelly silty CLAY |
    | :---: | :---: |
    | Remarks : | Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt |


    | BS Sieve <br> size, mm | Percent <br> passing | Hydrometer analysis |  |
    | :---: | :---: | :---: | :---: |
    |  |  | \% passing |  |
    | $\mathbf{1 0 0}$ | 100 | $\mathbf{0 . 0 6 3 0}$ | 48 |
    | $\mathbf{9 0}$ | 100 | $\mathbf{0 . 0 2 0 0}$ | 40 |
    | $\mathbf{7 5}$ | 100 | $\mathbf{0 . 0 0 6 0}$ | 34 |
    | $\mathbf{6 3}$ | 100 | $\mathbf{0 . 0 0 2 0}$ | 29 |
    | $\mathbf{5 0}$ | 100 |  |  |
    | $\mathbf{3 7 . 5}$ | 100 |  |  |
    | $\mathbf{2 8}$ | 97.1 |  |  |
    | $\mathbf{2 0}$ | 94.2 |  |  |
    | $\mathbf{1 4}$ | 91.9 |  |  |
    | $\mathbf{1 0}$ | 88.2 |  |  |
    | $\mathbf{6 . 3}$ | 83 |  |  |
    | $\mathbf{5 . 0}$ | 81 |  |  |
    | $\mathbf{2 . 3 6}$ | 75.5 |  |  |
    | $\mathbf{2 . 0 0}$ | 74.2 |  |  |
    | $\mathbf{1 . 1 8}$ | 71.2 |  |  |
    | $\mathbf{0 . 6 0 0}$ | 66.7 |  |  |
    | $\mathbf{0 . 4 2 5}$ | 63.2 |  |  |
    | $\mathbf{0 . 3 0 0}$ | 59.5 |  |  |
    | $\mathbf{0 . 2 1 2}$ | 56.8 |  |  |
    | $\mathbf{0 . 1 5 0}$ | 54.5 |  |  |
    | $\mathbf{0 . 0 6 3}$ | 48 |  |  |
    |  |  |  |  |

    

    | Engineer : | Louth County Council | Lab. No : | 23/1831 | Hole ID : | TP 02 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Project : | Ballymakenny West, Drogheda | Sample No : | MK24 | Depth, m : | 1.00 |


    | Material description : | slightly sandy slightly gravelly silty CLAY |
    | :---: | :---: |
    | Remarks : | Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt |


    | BS Sieve <br> size, mm | Percent <br> passing | Hydrometer analysis |  |
    | :---: | :---: | :---: | :---: |
    |  |  | \% passing |  |
    | $\mathbf{1 0 0}$ | 100 | $\mathbf{0 . 0 6 3 0}$ |  |
    | $\mathbf{9 0}$ | 100 | $\mathbf{0 . 0 2 0 0}$ |  |
    | $\mathbf{7 5}$ | 100 | $\mathbf{0 . 0 0 6 0}$ |  |
    | $\mathbf{6 3}$ | 100 | $\mathbf{0 . 0 0 2 0}$ |  |
    | $\mathbf{5 0}$ | 100 |  |  |
    | $\mathbf{3 7 . 5}$ | 100 |  |  |
    | $\mathbf{2 8}$ | 100 |  |  |
    | $\mathbf{2 0}$ | 100 |  |  |
    | $\mathbf{1 4}$ | 100 |  |  |
    | $\mathbf{1 0}$ | 98.1 |  |  |
    | $\mathbf{6 . 3}$ | 95.9 |  |  |
    | $\mathbf{5 . 0}$ | 94.8 |  |  |
    | $\mathbf{2 . 3 6}$ | 83.1 |  |  |
    | $\mathbf{2 . 0 0}$ | 81.9 |  |  |
    | $\mathbf{1 . 1 8}$ | 73.5 |  |  |
    | $\mathbf{0 . 6 0 0}$ | 61.6 |  |  |
    | $\mathbf{0 . 4 2 5}$ | 55.8 |  |  |
    | $\mathbf{0 . 3 0 0}$ | 52.4 |  |  |
    | $\mathbf{0 . 2 1 2}$ | 48.7 |  |  |
    | $\mathbf{0 . 1 5 0}$ | 45.4 |  |  |
    | $\mathbf{0 . 0 6 3}$ | 37 |  |  |
    |  |  |  |  |

    

    | Engineer : | Louth County Council | Lab. No : | 23/1832 | Hole ID : | TP 05 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Project : | Ballymakenny West, Drogheda | Sample No : | MK12 | Depth, m : | 1.00 |


    | Material description : | sandy slightly gravelly silty CLAY |
    | :---: | :---: |
    | Remarks : | Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt |


    | BS Sieve <br> size, mm | Percent <br> passing | Hydrometer analysis |  |
    | :---: | :---: | :---: | :---: |
    |  |  | \% passing |  |
    | $\mathbf{1 0 0}$ | 100 | $\mathbf{0 . 0 6 3 0}$ | 46 |
    | $\mathbf{9 0}$ | 100 | $\mathbf{0 . 0 2 0 0}$ | 38 |
    | $\mathbf{7 5}$ | 100 | $\mathbf{0 . 0 0 6 0}$ | 33 |
    | $\mathbf{6 3}$ | 100 | $\mathbf{0 . 0 0 2 0}$ | 28 |
    | $\mathbf{5 0}$ | 100 |  |  |
    | $\mathbf{3 7 . 5}$ | 100 |  |  |
    | $\mathbf{2 8}$ | 89.6 |  |  |
    | $\mathbf{2 0}$ | 88.3 |  |  |
    | $\mathbf{1 4}$ | 85.5 |  |  |
    | $\mathbf{1 0}$ | 81.8 |  |  |
    | $\mathbf{6 . 3}$ | 79.3 |  |  |
    | $\mathbf{5 . 0}$ | 76.9 |  |  |
    | $\mathbf{2 . 3 6}$ | 69.9 |  |  |
    | $\mathbf{2 . 0 0}$ | 68.8 |  |  |
    | $\mathbf{1 . 1 8}$ | 66 |  |  |
    | $\mathbf{0 . 6 0 0}$ | 61.1 |  |  |
    | $\mathbf{0 . 4 2 5}$ | 58.4 |  |  |
    | $\mathbf{0 . 3 0 0}$ | 56.5 |  |  |
    | $\mathbf{0 . 2 1 2}$ | 54.8 |  |  |
    | $\mathbf{0 . 1 5 0}$ | 52.5 |  |  |
    | $\mathbf{0 . 0 6 3}$ | 46 |  |  |
    |  |  |  |  |

    

    | Cobbles, \% | 0 |
    | ---: | :---: |
    | Gravel, \% | 31 |
    | Sand, \% | 23 |
    | Silt, \% | 18 |
    | Clay, \% | 28 |


    | Engineer : | Louth County Council | Lab. No : | 23/1833 | Hole ID : | TP 07 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Project : | Ballymakenny West, Drogheda | Sample No : | MK03 | Depth, m : | 1.00 |


    | Material description : | slightly sandy slightly gravelly silty CLAY |
    | :---: | :---: |
    | Remarks : | Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt |


    | BS Sieve <br> size, mm | Percent <br> passing | Hydrometer analysis |  |
    | :---: | :---: | :---: | :---: |
    |  |  | \% passing |  |
    | $\mathbf{1 0 0}$ | 100 | $\mathbf{0 . 0 6 3 0}$ | 43 |
    | $\mathbf{9 0}$ | 100 | $\mathbf{0 . 0 2 0 0}$ | 37 |
    | $\mathbf{7 5}$ | 100 | $\mathbf{0 . 0 0 6 0}$ | 31 |
    | $\mathbf{6 3}$ | 100 | $\mathbf{0 . 0 0 2 0}$ | 27 |
    | $\mathbf{5 0}$ | 100 |  |  |
    | $\mathbf{3 7 . 5}$ | 100 |  |  |
    | $\mathbf{2 8}$ | 94.5 |  |  |
    | $\mathbf{2 0}$ | 83.7 |  |  |
    | $\mathbf{1 4}$ | 79.7 |  |  |
    | $\mathbf{1 0}$ | 76.2 |  |  |
    | $\mathbf{6 . 3}$ | 72.8 |  |  |
    | $\mathbf{5 . 0}$ | 71.4 |  |  |
    | $\mathbf{2 . 3 6}$ | 67.1 |  |  |
    | $\mathbf{2 . 0 0}$ | 65.7 |  |  |
    | $\mathbf{1 . 1 8}$ | 62.7 |  |  |
    | $\mathbf{0 . 6 0 0}$ | 58.4 |  |  |
    | $\mathbf{0 . 4 2 5}$ | 55.4 |  |  |
    | $\mathbf{0 . 3 0 0}$ | 52.8 |  |  |
    | $\mathbf{0 . 2 1 2}$ | 50.5 |  |  |
    | $\mathbf{0 . 1 5 0}$ | 48.2 |  |  |
    | $\mathbf{0 . 0 6 3}$ | 43 |  |  |
    |  |  |  |  |

    

    | Engineer : | Louth County Council | Lab. No : | 23/1834 | Hole ID : | TP 10 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Project : | Ballymakenny West, Drogheda | Sample No : | MK41 | Depth, m : | 1.00 |


    | Material description : | slightly sandy slightly gravelly silty CLAY |
    | :---: | :---: |
    | Remarks : | Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt |


    | Client | Louth County Council |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Site | Ballymakenny West, Drogheda |  |  |  |  |  |  |  |  |  |
    | S.I. File No | 6182 / 23 |  |  |  |  |  |  |  |  |  |
    | Test Lab | Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01)6108768 Email:info@siteinvestigations.ie |  |  |  |  |  |  |  |  |  |
    | Report Date 7th November 2023 | 7th November 2023 |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |
    | Hole Id | $\begin{aligned} & \text { Depth } \\ & \text { (mBGL) } \end{aligned}$ | Sample <br> No | Lab Ref | $\begin{gathered} \mathrm{pH} \\ \text { Value } \end{gathered}$ | Water Soluble Sulphate Content (2:1 Water-soil extract) $\left(\mathrm{SO}_{3}\right)$ g/L | Water Soluble Sulphate Content (2:1 Water-soil extract) $\left(\mathrm{SO}_{3}\right)$ \% | Acid Soluble Sulphate Content (2:1 Water-soil extract) $\left(\mathrm{SO}_{3}\right)$ g/L | Acid Soluble Sulphate Content (2:1 Water-soil extract) $\left(\mathrm{SO}_{3}\right)$ \% | Chloride ion Content (water:soil ratio 2:1) \% | $\begin{gathered} \hline \% \text { passing } \\ 2 \mathrm{~mm} \end{gathered}$ |
    | BH01 | 1.00 | DC01 | 23/1830 | 7.81 | 0.126 | 0.088 |  |  |  | 70.0 |
    | TP02 | 1.00 | MK24 | 23/1831 | 7.96 | 0.126 | 0.093 |  |  |  | 74.2 |
    | TP05 | 1.00 | MK12 | 23/1832 | 7.63 | 0.124 | 0.102 |  |  |  | 81.9 |
    | TP07 | 1.00 | MK03 | 23/1833 | 7.77 | 0.127 | 0.088 |  |  |  | 68.8 |
    | TP10 | 1.00 | MK41 | 23/1834 | 8.07 | 0.126 | 0.083 |  |  |  | 65.7 |

    ## Appendix 8

    ## Environmental Laboratory Test Results

    Site Investigations Ltd
    The Grange
    Carhugar
    12th Lock Road
    Lucan
    Co. Dublin
    Attention: Stephen Letch

    # CERTIFICATE OF ANALYSIS 

    Date of report Generation:<br>Customer:<br>Sample Delivery Group (SDG):<br>Your Reference:<br>Location:<br>Report No:<br>Order Number:

    09 November 2023
    Site Investigations Ltd
    231027-116
    6182

    Ballymakenny West, Drogheda<br>710414<br>75/A/23

    We received 4 samples on Friday October 27, 2023 and 4 of these samples were scheduled for analysis which was completed on Thursday November 09, 2023. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

    Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

    Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.
    All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.
    Incorrect sampling dates and/or sample information will affect the validity of results.
    The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

    ## Approved By:

    

    ## Sonia McWhan

    Operations Manager
    

    ALS Laboratories (UK) Limited. Registered Office: Torrington Avenue, Coventry CV4 9GU. Registered in England and Wales No. 02391955.

    ## Received Sample Overview

    | Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth $(\mathbf{m})$ |
    | :---: | :---: | :---: | :---: |
    | 28855184 | ST3 | Sampled Date |  |
    | 28855181 | TP1 | $0.50-0.50$ |  |
    | 28855182 | TP7 | $0.50-0.50$ |  |
    | 28855183 | TP10 | $0.50-0.50$ |  |

    Only received samples which have had analysis scheduled will be shown on the following pages.

    CERTIFICATE OF ANALYSIS
    
    

    Report Number: 710414

    ## Sample Descriptions

    ## Grain Sizes

    | very fine <0.0 | very fine $\quad<0.063 \mathrm{~mm}$ fine $0.063 \mathrm{~mm}-0.1 \mathrm{~mm}$ | $\mathrm{m}-0.1 \mathrm{~mm}$ | medium $\quad 0.1 \mathrm{~mm}-2 \mathrm{~mm}$ |  | $2 \mathrm{~mm}-10 \mathrm{~mm}$ very coa |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Lab Sample No(s) | Customer Sample Ref. | Depth (m) | Colour | Description | Inclusions | Inclusions 2 |
    | 28855184 | ST3 | 0.50-0.50 | Dark Brown | Clay Loam | Stones | None |
    | 28855181 | TP1 | 0.50-0.50 | Dark Brown | Clay | Stones | None |
    | 28855182 | TP7 | 0.50-0.50 | Dark Brown | Clay | Stones | Vegetation |
    | 28855183 | TP10 | 0.50-0.50 | Dark Brown | Sandy Clay Loam | Stones | Vegetation |

    These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

    We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

    Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

    CERTIFICATE OF ANALYSIS

    SDG: 231027-116
    Client Ref.: 6182

    Report Number: 710414
    Location: Ballymakenny West, Drogheda
    

    ## PAH by GCMS

    

    SDG: 231027-116
    Client Ref.: 6182

    Report Number: 710414
    Location: Ballymakenny West, Drogheda

    TPH CWG (S
    

    CERTIFICATE OF ANALYSIS

    SDG: 231027-116 Client Ref.: 6182

    Report Number: 710414

    VOC MS (S)
    

    ## WAC ANALYTICAL RESULTS

    REF : BS EN 12457/2

    | Client Reference |  |
    | :--- | :---: |
    | Mass Sample taken (kg) | 0.111 |
    | Mass of dry sample (kg) | 0.090 |
    | Particle Size $<4 \mathrm{~mm}$ | $>95 \%$ |


    | Site Location | Ballymakenny West, Drogheda |
    | :--- | :--- |
    | Natural Moisture Content (\%) | 22.8 |
    | Dry Matter Content (\%) | 81.5 |


    | Case |  | Landfill Waste Acceptance Criteria Limits |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | SDG | 231027-116 |  |  |  |
    | Lab Sample Number(s) | 28855181 | Inert Waste Landfill | StableNon-reactiveHazardous Wastein Non-HazardousLandfill | Hazardous Waste Landfill |
    | Sampled Date |  |  |  |  |
    | Customer Sample Ref. | TP1 |  |  |  |
    | Depth (m) | 0.50-0.50 |  |  |  |
    | Solid Waste Analysis | Result |  |  |  |
    | Total Organic Carbon (\%) | 0.294 | 3 | 5 | 6 |
    | Loss on Ignition (\%) | 3.7 | - | - | 10 |
    | Sum of BTEX (mg/kg) |  | - | - | - |
    | Sum of 7 PCBs ( $\mathrm{mg} / \mathrm{kg}$ ) | <0.021 | 1 | - | - |
    | Mineral Oil ( $\mathrm{mg} / \mathrm{kg}$ ) (EH_2D_AL) | <5 | 500 | - | - |
    | PAH Sum of 17 ( $\mathrm{mg} / \mathrm{kg}$ ) | <10 | 100 | - | - |
    | pH (pH Units) | 7.67 | - | >6 | - |
    | ANC to pH 6 ( $\mathrm{mol} / \mathrm{kg}$ ) | - | - | - | - |
    | ANC to pH 4 (mol/kg) | - | - | - | - |


    | Eluate Analysis | C2 Conc $^{\mathbf{n}}$ in 10:1 eluate ( $\mathrm{mg} / \mathrm{l}$ ) |  | A2 10:1 conc ${ }^{\text {n }}$ leached ( $\mathrm{mg} / \mathrm{kg}$ ) |  | Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Result | Limit of Detection | Result | Limit of Detection |  |  |  |
    | Arsenic | <0.0005 | <0.0005 | <0.005 | <0.005 | 0.5 | 2 | 25 |
    | Barium | 0.00148 | <0.0002 | 0.0148 | <0.002 | 20 | 100 | 300 |
    | Cadmium | <0.00008 | <0.00008 | <0.0008 | <0.0008 | 0.04 | 1 | 5 |
    | Chromium | <0.001 | <0.001 | <0.01 | <0.01 | 0.5 | 10 | 70 |
    | Copper | 0.000655 | <0.0003 | 0.00655 | <0.003 | 2 | 50 | 100 |
    | Mercury Dissolved (CVAF) | <0.00001 | <0.00001 | <0.0001 | <0.0001 | 0.01 | 0.2 | 2 |
    | Molybdenum | <0.003 | <0.003 | <0.03 | <0.03 | 0.5 | 10 | 30 |
    | Nickel | <0.0004 | <0.0004 | <0.004 | <0.004 | 0.4 | 10 | 40 |
    | Lead | 0.000261 | <0.0002 | 0.00261 | <0.002 | 0.5 | 10 | 50 |
    | Antimony | <0.001 | <0.001 | <0.01 | <0.01 | 0.06 | 0.7 | 5 |
    | Selenium | <0.001 | <0.001 | <0.01 | <0.01 | 0.1 | 0.5 | 7 |
    | Zinc | <0.001 | <0.001 | <0.01 | <0.01 | 4 | 50 | 200 |
    | Chloride | <2 | <2 | <20 | <20 | 800 | 15000 | 25000 |
    | Fluoride | <0.5 | <0.5 | <5 | <5 | 10 | 150 | 500 |
    | Sulphate (soluble) | 2.7 | <2 | 27 | <20 | 1000 | 20000 | 50000 |
    | Total Dissolved Solids | 21.2 | <10 | 212 | <100 | 4000 | 60000 | 100000 |
    | Total Monohydric Phenols (W) | <0.016 | <0.016 | <0.16 | <0.16 | 1 | - | - |
    | Dissolved Organic Carbon | 4.86 | <3 | 48.6 | <30 | 500 | 800 | 1000 |

    Leach Test Information

    | Date Prepared | 28-Oct-2023 |
    | :--- | :---: |
    | pH (pH Units) | 7.39 |
    | Conductivity $(\mu \mathrm{S} / \mathrm{cm})$ | 29 |
    | Volume Leachant (Litres) | 0.879 |

    Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
    Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature $\left(20 \pm 5^{\circ} \mathrm{C}\right)$
    Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

    ## CEN 10:1 SINGLE STAGE LEACHATE TEST

    ## WAC ANALYTICAL RESULTS

    REF : BS EN 12457/2

    Client Reference

    | Mass Sample taken (kg) | 0.110 |
    | :--- | :--- |
    | Mass of dry sample (kg) | 0.090 |
    | Particle Size $<4 \mathrm{~mm}$ | $>95 \%$ |

    Site Location
    Natural Moisture Content (\%)
    Dry Matter Content (\%)

    Ballymakenny West, Drogheda
    21.7
    82.2

    | Case |  | Landfill Waste Acceptance Criteria Limits |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | SDG | 231027-116 |  |  |  |
    | Lab Sample Number(s) | 28855182 |  |  |  |
    | Sampled Date |  | Inert Waste Landfill | StableNon-reactiveHazardous Wastein Non-HazardousLandfill | Hazardous Waste Landfill |
    | Customer Sample Ref. | TP7 |  |  |  |
    | Depth (m) | 0.50-0.50 |  |  |  |
    | Solid Waste Analysis | Result |  |  |  |
    | Total Organic Carbon (\%) | 0.528 | 3 | 5 | 6 |
    | Loss on Ignition (\%) | 3.89 | - | - | 10 |
    | Sum of BTEX ( $\mathrm{mg} / \mathrm{kg}$ ) | - | - | - | - |
    | Sum of 7 PCBs ( $\mathrm{mg} / \mathrm{kg}$ ) | <0.021 | 1 | - | - |
    | Mineral Oil (mg/kg) (EH_2D_AL) | <5 | 500 | - | - |
    | PAH Sum of 17 ( $\mathrm{mg} / \mathrm{kg}$ ) | <10 | 100 | - | - |
    | pH (pH Units) | 8.31 | - | >6 | - |
    | ANC to pH 6 ( $\mathrm{mol} / \mathrm{kg}$ ) | - | - | - | - |
    | ANC to pH 4 (mol/kg) | - | - | - | - |

    

    ## Leach Test Information

    | Date Prepared | 28-Oct-2023 |
    | :--- | :---: |
    | pH (pH Units) | 7.68 |
    | Conductivity $(\mu \mathrm{S} / \mathrm{cm})$ | 45 |
    | Volume Leachant (Litres) | 0.880 |

    Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
    Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature $\left(20 \pm 5^{\circ} \mathrm{C}\right)$
    Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

    ## CEN 10:1 SINGLE STAGE LEACHATE TEST

    ## WAC ANALYTICAL RESULTS

    REF : BS EN 12457/2

    Client Reference

    | Mass Sample taken (kg) | 0.102 |
    | :--- | :--- |
    | Mass of dry sample (kg) | 0.090 |
    | Particle Size $<4 \mathrm{~mm}$ | $>95 \%$ |

    Site Location
    Natural Moisture Content (\%)
    Dry Matter Content (\%)

    Ballymakenny West, Drogheda 13.7 88

    | Case |  | Landfill Waste Acceptance Criteria Limits |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Lab Sample Number(s) 28855183 |  |  |  | HazardousWaste Landfil |
    | Sampled Date |  | Inert Waste Landfill | StableNon-reactivetazardous Wastein Non-HazardousLandfill |  |
    | Customer Sample Ref. | TP10 |  |  |  |
    | Depth (m) | 0.50-0.50 |  |  |  |
    | Solid Waste Analysis Result |  |  |  |  |
    | Total Organic Carbon (\%) | 0.269 | 3 | 5 | 6 |
    | Loss on Ignition (\%) | 2.26 |  | - | 10 |
    | Sum of BTEX ( $\mathrm{mg} / \mathrm{kg}$ ) |  |  |  |  |
    | Sum of 7 PCBs (mg/kg) | <0.021 | 1 | - | - |
    | Mineral Oil (mg/kg) (EH_2D_AL) | <5 | 500 | - |  |
    | PAH Sum of 17 (mg/kg) | <10 | 100 | - | - |
    | pH (pH Units) | 8.69 |  | > | - |
    | ANC to pH 6 (mol/kg) |  | - | - | - |
    | ANC to pH 4 (mol/kg) | - |  |  |  |


    | Eluate Analysis | C2 Conc $^{\text {n }}$ in 10:1 eluate ( $\mathrm{mg} / \mathrm{l}$ ) |  | A2 10:1 conc ${ }^{\text {n }}$ leached ( $\mathrm{mg} / \mathrm{kg}$ ) |  | Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Result | Limit of Detection | Result | Limit of Detection |  |  |  |
    | Arsenic | <0.0005 | <0.0005 | <0.005 | <0.005 | 0.5 | 2 | 25 |
    | Barium | 0.00886 | <0.0002 | 0.0886 | <0.002 | 20 | 100 | 300 |
    | Cadmium | <0.00008 | <0.00008 | <0.0008 | <0.0008 | 0.04 | 1 | 5 |
    | Chromium | <0.001 | <0.001 | <0.01 | <0.01 | 0.5 | 10 | 70 |
    | Copper | 0.000701 | <0.0003 | 0.00701 | <0.003 | 2 | 50 | 100 |
    | Mercury Dissolved (CVAF) | <0.00001 | <0.00001 | <0.0001 | <0.0001 | 0.01 | 0.2 | 2 |
    | Molybdenum | <0.003 | <0.003 | <0.03 | <0.03 | 0.5 | 10 | 30 |
    | Nickel | 0.000449 | <0.0004 | 0.00449 | <0.004 | 0.4 | 10 | 40 |
    | Lead | <0.0002 | <0.0002 | <0.002 | <0.002 | 0.5 | 10 | 50 |
    | Antimony | <0.001 | <0.001 | <0.01 | $<0.01$ | 0.06 | 0.7 | 5 |
    | Selenium | <0.001 | <0.001 | <0.01 | <0.01 | 0.1 | 0.5 | 7 |
    | Zinc | <0.001 | <0.001 | <0.01 | <0.01 | 4 | 50 | 200 |
    | Chloride | <2 | <2 | <20 | <20 | 800 | 15000 | 25000 |
    | Fluoride | 0.535 | <0.5 | 5.35 | <5 | 10 | 150 | 500 |
    | Sulphate (soluble) | <2 | <2 | <20 | <20 | 1000 | 20000 | 50000 |
    | Total Dissolved Solids | 68.8 | <10 | 688 | <100 | 4000 | 60000 | 100000 |
    | Total Monohydric Phenols (W) | <0.016 | <0.016 | <0.16 | <0.16 | 1 | - | - |
    | Dissolved Organic Carbon | <3 | <3 | <30 | <30 | 500 | 800 | 1000 |

    ## Leach Test Information

    | Date Prepared | 28-Oct-2023 |
    | :--- | :---: |
    | pH (pH Units) | 8.68 |
    | Conductivity $(\mu \mathrm{S} / \mathrm{cm})$ | 93 |
    | Volume Leachant (Litres) | 0.888 |

    Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
    Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature $\left(20 \pm 5^{\circ} \mathrm{C}\right)$
    Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

    ## CEN 10:1 SINGLE STAGE LEACHATE TEST

    ## WAC ANALYTICAL RESULTS

    REF : BS EN 12457/2

    | Client Reference |  |
    | :--- | :--- |
    | Mass Sample taken (kg) | 0.115 |
    | Mass of dry sample (kg) | 0.090 |
    | Particle Size $<4 \mathrm{~mm}$ | $>95 \%$ |


    | Site Location | Ballymakenny West, Drogheda |
    | :--- | :--- |
    | Natural Moisture Content (\%) | 28.8 |
    | Dry Matter Content (\%) | 77.6 |


    | Case |  | Landfill Waste Acceptance Criteria Limits |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | SDG | 231027-116 |  |  |  |
    | Lab Sample Number(s) | 28855184 | Inert Waste Landfill | StableNon-reactiveHazardous Wastein Non-HazardousLandfill | Hazardous Waste Landfill |
    | Sampled Date |  |  |  |  |
    | Customer Sample Ref. | ST3 |  |  |  |
    | Depth (m) | 0.50-0.50 |  |  |  |
    | Solid Waste Analysis | Result |  |  |  |
    | Total Organic Carbon (\%) | 2.66 | 3 | 5 | 6 |
    | Loss on Ignition (\%) | 7.01 | - | - | 10 |
    | Sum of BTEX (mg/kg) |  | - | - | - |
    | Sum of 7 PCBs (mg/kg) | <0.021 | 1 | - | - |
    | Mineral Oil (mg/kg) (EH_2D_AL) | 6.46 | 500 | - | - |
    | PAH Sum of 17 ( $\mathrm{mg} / \mathrm{kg}$ ) | <10 | 100 | - | - |
    | pH (pH Units) | 8.09 | - | >6 | - |
    | ANC to pH 6 ( $\mathrm{mol} / \mathrm{kg}$ ) | - | - | - | - |
    | ANC to pH 4 (mol/kg) | - | - | - | - |


    | Eluate Analysis | C2 Conc $^{\mathbf{n}}$ in 10:1 eluate ( $\mathrm{mg} / \mathrm{l}$ ) |  | A2 10:1 conc ${ }^{\text {n }}$ leached ( $\mathrm{mg} / \mathrm{kg}$ ) |  | Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Result | Limit of Detection | Result | Limit of Detection |  |  |  |
    | Arsenic | 0.00119 | <0.0005 | 0.0119 | <0.005 | 0.5 | 2 | 25 |
    | Barium | 0.00688 | <0.0002 | 0.0688 | <0.002 | 20 | 100 | 300 |
    | Cadmium | <0.00008 | <0.00008 | <0.0008 | <0.0008 | 0.04 | 1 | 5 |
    | Chromium | <0.001 | <0.001 | <0.01 | <0.01 | 0.5 | 10 | 70 |
    | Copper | 0.00526 | <0.0003 | 0.0526 | <0.003 | 2 | 50 | 100 |
    | Mercury Dissolved (CVAF) | 0.0000116 | <0.00001 | 0.000116 | <0.0001 | 0.01 | 0.2 | 2 |
    | Molybdenum | <0.003 | <0.003 | <0.03 | <0.03 | 0.5 | 10 | 30 |
    | Nickel | 0.00102 | <0.0004 | 0.0102 | <0.004 | 0.4 | 10 | 40 |
    | Lead | 0.000375 | <0.0002 | 0.00375 | <0.002 | 0.5 | 10 | 50 |
    | Antimony | <0.001 | <0.001 | <0.01 | <0.01 | 0.06 | 0.7 | 5 |
    | Selenium | <0.001 | <0.001 | <0.01 | <0.01 | 0.1 | 0.5 | 7 |
    | Zinc | <0.001 | <0.001 | <0.01 | <0.01 | 4 | 50 | 200 |
    | Chloride | <2 | <2 | <20 | <20 | 800 | 15000 | 25000 |
    | Fluoride | 0.994 | <0.5 | 9.94 | <5 | 10 | 150 | 500 |
    | Sulphate (soluble) | 2.3 | <2 | 23 | <20 | 1000 | 20000 | 50000 |
    | Total Dissolved Solids | 103 | <10 | 1030 | <100 | 4000 | 60000 | 100000 |
    | Total Monohydric Phenols (W) | <0.016 | <0.016 | <0.16 | <0.16 | 1 | - | - |
    | Dissolved Organic Carbon | 7.9 | <3 | 79 | <30 | 500 | 800 | 1000 |

    Leach Test Information

    | Date Prepared | 28-Oct-2023 |
    | :--- | :---: |
    | pH (pH Units) | 8.32 |
    | Conductivity $(\mu \mathrm{S} / \mathrm{cm})$ | 134 |
    | Volume Leachant (Litres) | 0.875 |

    Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
    Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature $\left(20 \pm 5^{\circ} \mathrm{C}\right)$
    Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

    ## Table of Results - Appendix

    | Method No | Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material |
    | :---: | :--- |
    | PM024 | Leaching Procedure for CEN One Stage Leach Test 2:1 \& 10:1 1 Step |
    | PM115 | Determination of Loss on Ignition |
    | TM018 | Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12) |
    | TM089 | Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water |
    | TM090 | Determination of Fluoride using the Kone Analyser |
    | TM104 | Determination of Volatile Organic Compounds by Headspace / GC-MS |
    | TM123 | The Determination of Total Dissolved Solids in Water |
    | TM132 | ELTRA CS800 Operators Guide |
    | TM133 | Determination of pH in Soil and Water using the GLpH pH Meter |
    | TM151 | Determination of Hexavalent Chromium using Kone analyser |
    | TM168 | Analysis of Aqueous Samples by ICP-MS |
    | TM181 | Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils |
    | TM184 | Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES |
    | TM218 | Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry |
    | TM256 | The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers |
    | TM259 | The determination of PAH in soil samples by GC-MS |
    | TM414 | Determination of pH, EC, TDS and Alkalinity in Aqueous samples |
    | TM415 | Determination of Phenols in Waters and Leachates by HPLC |
    |  | Determination of Coronene in soils by GCMS |

    Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

    | Lab Sample No(s) Customer Sample Ref. <br> AGS Ref. <br> Depth <br> Type | 28855184 | 28855181 | 28855182 | 28855183 |
    | :---: | :---: | :---: | :---: | :---: |
    |  | ST3 | TP1 | TP7 | TP10 |
    |  |  |  |  |  |
    |  | 0.50-0.50 | 0.50-0.50 | 0.50-0.50 | 0.50-0.50 |
    |  | Soil/Solid (S) | Soil/Solid (S) | Soil/Solid (S) | Soil/Solid (S) |
    | Anions by Kone (w) | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 | 03-Nov-2023 |
    | CEN 10:1 Leachate (1 Stage) | 30-Oct-2023 | 30-Oct-2023 | 30-Oct-2023 | 30-Oct-2023 |
    | CEN Readings | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 |
    | Chromium III | 02-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | Coronene | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | Dissolved Metals by ICP-MS | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 |
    | Dissolved Organic/lnorganic Carbon | 09-Nov-2023 | 07-Nov-2023 | 09-Nov-2023 | 09-Nov-2023 |
    | EPH by GCxGC-FID | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | EPH CWG GC (S) | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | Fluoride | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | GRO by GC-FID (S) | 31-Oct-2023 | 31-Oct-2023 | 31-Oct-2023 | 31-Oct-2023 |
    | Hexavalent Chromium (s) | 31-Oct-2023 | 31-Oct-2023 | 31-Oct-2023 | 31-Oct-2023 |
    | Loss on Ignition in soils | 03-Nov-2023 | 03-Nov-2023 | 03-Nov-2023 | 02-Nov-2023 |
    | Mercury Dissolved | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 |
    | Metals in solid samples by OES | 02-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | Moisture at 105 C | 28-Oct-2023 | 28-Oct-2023 | 28-Oct-2023 | 28-Oct-2023 |
    | PAH 16 \& 17 Calc | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | PAH by GCMS | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | PCBs by GCMS | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | pH | 01-Nov-2023 | 31-Oct-2023 | 01-Nov-2023 | 31-Oct-2023 |
    | pH Value of Filtered Water | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 |
    | Phenols by HPLC (W) | 03-Nov-2023 | 03-Nov-2023 | 03-Nov-2023 | 03-Nov-2023 |
    | Sample description | 28-Oct-2023 | 28-Oct-2023 | 28-Oct-2023 | 28-Oct-2023 |
    | Total Dissolved Solids on Leachates | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | Total Organic Carbon | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 | 02-Nov-2023 |
    | TPH CWG GC (S) | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 | 01-Nov-2023 |
    | VOC MS (S) | 31-Oct-2023 | 31-Oct-2023 | 31-Oct-2023 | 01-Nov-2023 |


    | SDG: | $231027-116$ |
    | :--- | :--- |
    | Client Ref: | 6182 |

    Report Number: 710414

    ## Superseded Report:

    Location: Ballymakenny West, Drogheda

    ## Appendix

    ## General

    18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of $>75 \%$ are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of $<75 \%$ is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

    ## 19. Sample Deviations

    If a sample is classed as deviated then the associated results may be compromised.
    3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
    4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
    5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
    6. NDP - No determination possible due to insufficient/unsuitable sample.
    7. Results relate only to the items tested.
    8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
    9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A \% recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130\%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
    10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
    11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
    12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
    13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
    14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
    15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogran is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these
    non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
    16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/madt ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

    17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

    | 1 | Container with Headspace provided for volatiles analysis |
    | :---: | :--- |
    | 2 | Incorrect container received |
    | 3 | Deviation from method |
    | 4 | Matrix interference |
    |  | Sample holding time exceeded in laboratory |
    | @ | Sample holding time exceeded due to late arrival of instructions or <br> samples |
    | § | Sampled on date not provided |

    ## 20. Asbestos

    When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

    ## Identification of Asbestos in Bulk Materials \& Soils

    The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

    The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

    | Asbe stos Type |  |
    | :---: | :---: |
    | Chrysoile | CommonName |
    | Amosite | Write Asbesbs $n$ Asbesbs |
    | Cooddolite | Blue Asbe sos |
    | Fibrous Acinolite | - |
    | Fbous Anhop hyl lite | - |
    | Fibrous Tremolie | - |

    ## Visual Estimation Of Fibre Content

    Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

    ## Respirable Fibres

    Respirable fibres are defined as fibres of $<3 \mu \mathrm{~m}$ diameter, longer than $5 \mu \mathrm{~m}$ and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

    Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

    The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

    ## Appendix 9

    Waste Classification Report

    HazWasteOnline ${ }^{\text {m }}$

    ## Waste Classification Report

    ```
 HazWasteOnline```

