

HAYES HIGGINS PARTNERSHIP CHARTERED ENGINEERS • PROJECT MANAGERS

Civil Engineering Services Report (S179A) For

Development at Ballymakenny Road, Drogheda, Co. Louth Louth County Council

Comhairle Contae **Lú Louth** County Council

2nd Floor, The Glass House, 11 Coke Lane, Smithfield, Dublin 7. Tel: +353 (0)1 661 2321 Email: admin@hayeshiggins.ie Web: www.hhp.ie

Contents

- 1. Introduction
- 2. Site
- 3. Surface Water Drainage System
- 4. Wastewater System
- 5. Water Supply System
- 6. Flood Risk Assessment
- 7. Site Layout
- 8. DMURS
- 9. Services Design Summary
- Appendix A Proposed Drainage Layout
- Appendix B Proposed Watermain Layout
- Appendix C Site Survey
- Appendix D Surface Water Calculations
- Appendix E Swept Path Analysis
- Appendix F Site Investigation Report
- Appendix G Confirmation of Feasibility
- Appendix H Road Safety Audit
- Appendix I Traffic Impact Assessment
- Appendix J SUDS / Green Infrastructure Feasibility Checklist
- Appendix K DMURS Statement of Consistency

DOCUMENT CONTROL SHEET

Client	Louth	County	Counci	il										
Project Title	Develo Homes Metho	opment s, Comr ds of C	Ballym nunity F onstruc	akenny acilities tion	Road, [& Asso	Droghed ciated \	da. Soci Works vi	ial Housing a Modern						
Project Ref.	23D047													
Document Title	S179A													
Document No.	23D04	7-PR 01												
This Document	DCS	PD	TOC	Text	-	-	-	Appendices						
Comprises	1 - 1 5 11													
Check														

Revision	Status	Author	Reviewed By	Approved By	Issue Dates
Р	S 179 A	RM	LM	DH	April 2024

1. Introduction

Hayes Higgins Partnership has been commissioned to prepare a Civil Engineering Services Report for the proposed development at Ballymakenny Road, Drogheda, County Louth.

This report was compiled after reviewing the available information on drainage and water supply, reviewing the OPW flood maps and other available information. It contains information on the design of the surface water and wastewater systems to be constructed for the proposed development. The compilation of information on the existing public mains, wastewater and surface water lines is complete with a survey to confirm levels, sizes and other information necessary for a more detailed design.

The design of both the surface water and wastewater systems has been carried out in accordance with the following:

- The Greater Dublin Regional Code of Practice for Drainage Works
- Technical Guidance Document H of the Building Regulations
- The Greater Dublin Strategic Drainage Study (GDSDS)
- DOE Recommendations for Site Development Works for Housing Areas
- BS 8301:1985, Code of practice for Building Drainage
- BS EN 752 External building drainage
- OPW The Planning System and Flood Risk Management
- Irish Water Code of Practice and Standard Details (Water & Wastewater)
- DMURS- Design Manual for Urban Roads and Streets
- Louth County Council codes of practice

The wastewater system for the proposed development is a gravity feed system within the site falling to a pump station then pumped to the existing wastewater network. The proposed surface water drainage system is a gravity feed drainage system to an existing line via an attenuation system on site. The surface water system is designed to take the runoff generated by a 1 in 100 year storm event (+20% for climate change). The outfall from the surface water system is detailed below.

2. Site

The site in question is located to the north of Drogheda town centre in County Louth. The existing site is a greenfield site & is zoned A2 New residential Phase 1 in the Louth County Development Plan. The construction of 97no. houses including 12no. 2-bed bungalows, 40no. two storey 2-bed houses, 30no. two

storey 3-bed houses, 13no. two storey 4-bed houses, and 2no. 3-bed bungalows on a site of c. 3.03 hectares in the townland of Yellowbatter at Ballymakenny Road, Drogheda, Co Louth.

The development will also include the construction of a new entrance onto the Ballymakenny Road; provision of new cycleway, footpath, and public lighting along the Ballymakenny Road; new estate roads and homezones within the site; 120no. car parking spaces including both on-street and in-curtilage parking: cycle parking; hard and soft landscaping including public open spaces, playground, and private gardens; boundary treatments; ESB substation; lighting; laying of underground sewers, mains and pipes; underground pump station and attenuation tanks; and all associated works.

The site is bound by hedgerow and a precast concrete fence to the west. There is a commercial and industrial site to the North that is bound by a steel palisade fence and a greenfield site to the north west that is bound by hedgerow. The site is bound to the east by Ballymakenny Road and to the south by a boundary wall of a residential estate. The topography of the site shows a general downward slope from east to west. A copy of the site survey drawing is included in Appendix C. The development will be accessed from a proposed entrance on Ballymakenny Road, this entrance is located along the eastern boundary. Residents will have parking spaces located within the site.

3. Surface Water Drainage

Local Authorities require that all developments must include a sustainable urban drainage system, SuDS. A site investigation was undertaken to establish the permeability of the site. The site investigation advises the site does not have any available infiltration and as such permeable surfaces and natural infiltration are not viable, refer to appendix F. Reference to the attached SUDS / Green Infrastructure Checklist Appendix J. As the conditions on site are not favourable to infiltration a modular attenuation system connected to the existing surface drainage network, via a hydrobrake limiting discharge to 2 l/s/ha, is to be used to channel the surface water from the developed site.

A gravity feed surface water system will serve the hardstanding on site. The main surface network in the proposed development are to consist of 225mm diameter uPVC pipes with fall 1/150. There are two attenuation modular tanks located within the site, the first is located in the central open space, located between blocks 6/7 and 18/19, and the second is located in the western open space opposite block no 12 of the site. There is an adjacent available surface water line to the west of the site. The possible outfall connection as indicated on the drawing is indicated.

The required storage volume to retain the on-site runoff for is 870m³. A modular type attenuation system will be provided. To alleviate any possible risk of flood the storage is designed for a 1 in 100 year storm

(+20%). A 20% increase in runoff due to global warming is included as per "Greater Dublin Regional Code of Practice for Drainage Works" and the "GDSDS".

The surface water network has been designed in accordance with BS EN 752, Code of Practice for Drainage Outside Buildings. Details of the proposed surface water drainage system are shown in Hayes Higgins Partnership drawing within Appendix A and calculations within Appendix D.

4. Wastewater Drainage

The wastewater system has been designed in accordance with Irish Water Code of Practice and Standard Details for Wastewater, BS 8301:1985, Code of Practice for Building Drainage and the current Building Regulations.

The wastewater system for the development is a gravity feed system falling to a proposed pumping station at the west of the site, in an open space. The pumping station will pump the foul to a 225mm diameter existing sewer in Ballymakenny Road. Development will not result in a significant increase in foul discharge from the site on the public sewer and we do not anticipate any capacity problems. Refer to attached, Confirmation of Feasibility from Irish Water, Appendix G. The wastewater network in the proposed development is to consist of 225mm diameter uPVC pipes with required fall chosen throughout to suit. A roughness coefficient (ks) of 0.6mm is applied to the design of all pipes.

A Pre-Connection Enquiry form was submitted to Irish Water and Confirmation of Feasibility received. Refer to appendix G. The drawings included with the \$179A proposal show the proposed foul drainage layout. Details of the proposed foul sewer are shown in Hayes Higgins Partnership drawing within Appendix A. Final designs are subject to agreement with Irish Water at Connection Application Stage.

5. Water Supply System

There is recently completed upgrade works on Ballymakenny Road, completed in 2023, where a feasible connection may be made to the 100mm diameter watermain, and the proposed 100mm HDPE looped watermain on site will connect to this main line. A topographical survey has been completed to verify cover & invert levels of the existing water network in the vicinity of the development.

In accordance with requirements air valves and scour valves will be provided around the site as necessary. Hydrants will be provided as required by Technical Guidance Document B of the Building Regulations 2006.

Water saving devices including aerated taps and low water usage appliances will be used in the proposed development in accordance with best practice. The water supply system has been designed and will be installed in accordance with Irish Water Code of Practice and Standard Details for Water.

A Pre-Connection Enquiry form was submitted to Irish Water and Confirmation of Feasibility received. Refer to appendix G. The proposed watermain layout and details are shown on Hayes Higgins Partnership drawing within Appendix B. Final designs are subject to agreement with Irish Water at Connection Application Stage.

6. Flood Risk Assessment

A flood risk assessment was undertaken to identify possible sources of flooding and the risk posed to the development, and separately the risk posed to surrounding areas as a result of the development. The site is noted as not being in a flood zone for either coastal or fluvial flooding. The site also has a downhill gradient east to west.

External Sources

Flood maps website, www.floodmaps.ie has been reviewed. This shows that the site has not been subjected to flooding during previously reported flooding events. As such it is reasonable to assume there is no risk to the proposed development resulting from flooding off-site.

Internal sources

It is intended that all surface water run off generated by the 1in100 year storm will be dealt with via an attenuation tank. An allowance has been made for a 20% increase in runoff due to global warming, as per the "Greater Dublin Strategic Drainage Study" recommendations.

7. Site Layout

This development has been designed in accordance with the Design Manual for Urban Roads and Streets (DMURS), refer to road layout drawing, minimum footpath widths and junction radii have been provided to comply with DMURS. A swept path analysis has been carried out for a fire truck as shown on drawings attached, refer to appendix E. A Road Safety Audit and Traffic Impact Assessment have been completed by Roadplan. Please refer to Appendix H and I.

8. DMURS Statement of Consistency

The proposed site layout is confirmed to abide by the guidelines as set out in the Design Manual for Urban Roads and Streets (DMURS). Refer to attached Appendix K – DMURS Statement of Consistency

9. Services Design Summary

The proposed surface water drainage system has been designed so as to ensure that adequate selfcleansing velocities are obtained, adequate attenuation & sustainable drainage systems in accordance with the Building Regulations, and comply in full with the Greater Dublin Regional Code of Practice for Drainage Works. Similarly, the proposed wastewater system has been designed so as to ensure that adequate self-cleansing velocities are obtained for partial flows under design loading, in accordance with the Building Regulations and Irish Water Code of Practice and Standard Details for Water & Wastewater.

Local roads & streets are designed in accordance with DMURS & the objectives of the Louth County Development Plan to be safe, attractive & comfortable for all users. The design encourages the use of sustainable modes of transport with facilities for pedestrians/cyclists including the provision of bicycle parking. There is also provision for electric vehicle charge points within the site. Footpaths & cycle lanes will connect with proposed & existing infrastructure in the vicinity. The development will be served by an existing local bus service.

Appendix A – Proposed Drainage Layout

(See accompanying drawings listed below)

		DRAWING / DO	CUMENT REGISTE	ER AND	ISSU	E SHEET								S	Sheet No	. 1
Project N	. 23D047		Day	11												
Project Na	LOUTH ADP HOUSING: BALLYMAKENNY		Year	24												-
Drg No.	Drawing / Document Name	Format	R.C. Sched. Sheets					Dr	awing Re	visions						
01 P	roposed Drainage Layout	A1		P												
03 P	roposed Watermain Layout	A1		Р												
04A li	ish Water Foul & Surface Drainage Details - Sheet 1	A1		Р												
04B	ish Water Foul & Surface Drainage Details - Sheet 2	A1		P	_											
04C II	ish Water Foul & Surface Drainage Details - Sheet 4	A1		P												
05A II	ish Water Watermain Details - Sheet 1	A1		Р												
05B II	ish Water Watermain Details - Sheet 2	A1		Р												
05C II	ish Water Watermain Details - Sheet 3	A1		P	_									_		
05D II	roposed Cycling & Pedestrian Crossing Lavout	A1 A1		P												_
07 P	roposed Swept Path Analysis Layout	A1		P												
					_											
					_											
					_											
					_											
					_									_		
							+							+		
					-									+		_
					_									_		
																_
					_											
					_									_		
					_											
					_									_		
					_								+	+		
													++	+		-
L				\square			++				+		++	+		$-\!\!\!\!-\!\!\!\!$
				+++	_		+						+	++		_
\vdash					-		+++						+	++		_
														+		_
	Distribution	Initials	Name						No. of co	pies						
Client			L.C.C.	1												
Architect			EML Architects	1			+					+	$+ \top$	$+ \mp$		
Quantity	Surveyor				-							+	+	+		_
Main Con	Head Office															
Mech / F	Site															
Structura	Engineer		H.H.P	1			+					++	+	++		
Planning .	Authority		L.C.C.	1												
Irish Wate	r						+					++	++	+	-	
Construct	ion Manager				_											_
Tank Cop	/															
		ISSUED FOR		P										+		_
HAYF	S HIGGINS PARTNERSHIP	DOCUMENT TYPE		EM												
-	Chartered Engineers	R.C SCHEDULE														
The Gla	erupeet Managers	Issued For				Symbo	ла кеу				1	D	ocumen	t Type		
	T. 01 - 661 2321, F. 01 - 662 5804	Preliminary A PI	anning P Measurem	ent M							Pr	ints	PR	E	mail	EM
	E. admin@haveshiggins.ie	Information I T	ender T Constructi	ion c							Di	sks	CD	Joload S	Share Dr	ive up

Appendix B – Proposed Watermain Layout

(See accompanying drawings listed below)

		DRAWING / DO	CUMENT REGISTE	ER AND	ISSU	E SHEET								S	Sheet No	. 1
Project N	. 23D047		Day	11												
Project Na	LOUTH ADP HOUSING: BALLYMAKENNY		Year	24												-
Drg No.	Drawing / Document Name	Format	R.C. Sched. Sheets					Dr	awing Re	visions						
01 P	roposed Drainage Layout	A1		P												
03 P	roposed Watermain Layout	A1		Р												
04A li	ish Water Foul & Surface Drainage Details - Sheet 1	A1		Р												
04B	ish Water Foul & Surface Drainage Details - Sheet 2	A1		P	_											
04C II	ish Water Foul & Surface Drainage Details - Sheet 4	A1		P												
05A II	ish Water Watermain Details - Sheet 1	A1		Р												
05B II	ish Water Watermain Details - Sheet 2	A1		Р												
05C II	ish Water Watermain Details - Sheet 3	A1		P	_									_		
05D II	roposed Cycling & Pedestrian Crossing Lavout	A1 A1		P												
07 P	roposed Swept Path Analysis Layout	A1		P												
					_											
					_											
					_											
					_											
					_									_		
							+							+		
					-								+	+		_
					_									_		
																_
					_											
					_									_		
					_											
					_									_		
					_								+	+		
													++	+		-
L				\square			++				+		++	+-[$-\!\!\!\!-\!\!\!\!$
				+++	_		+						+	++		_
\vdash					-		+++						+	++		_
														+		_
	Distribution	Initials	Name						No. of co	pies						
Client			L.C.C.	1												
Architect			EML Architects	1			+					+	$+ \top$	$+ \mp$		
Quantity	Surveyor				-		+					+	+	+		_
Main Con	Head Office															
Mech / F	Site															
Structura	Engineer		H.H.P	1			+					++	+	++		
Planning .	Authority		L.C.C.	1												
Irish Wate	r						+					++	++	+	-	
Construct	ion Manager				_											_
Tank Cop	/															
		ISSUED FOR		P										+		_
HAYF	S HIGGINS PARTNERSHIP	DOCUMENT TYPE		EM												
-	Chartered Engineers	R.C SCHEDULE														
The Gla	erupeet Managers	Issued For				Symbo	ла кеу					D	ocumen	t Type		
	T. 01 - 661 2321, F. 01 - 662 5804	Preliminary A PI	anning P Measurem	ent M							Pr	ints	PR	E	mail	EM
	E. admin@haveshiggins.ie	Information I T	ender T Constructi	ion c							Di	sks	CD	Joload S	Share Dr	ive up

Appendix C – Site Survey

Appendix D – Surface Water Calculations

Extreme Rainfall Return Periods

Ballymakenny, Louth Co Co

Location: Average Annual Rainfall:

Maximum rainfall (mm) of indicated duration expected in the indicated return period.

						R	eturn Per	iod (year	s)								
Dura	ation	1/2	1	2	3	4	5	10	20	30	50	75	100		1in5 mm/hr	1in30 mm/hr	1in100 mm/hr
5 min	5	2.5	3.4	3.9	4.7	5.2	5.6	6.8	8.2	9.1	10.4	11.6	12.5	21.5	23.40	25.10	N/A ,
10 min	10	3.4	4.8	5.5	6.5	7.2	7.7	9.5	11.5	12.7	14.5	16.1	17.4	29.9	32.70	35.00	N/A ,
15 min	15	4.1	5.6	6.4	7.7	8.5	9.1	11.2	13.5	15.0	17.1	19.0	20.4	35.2	38.40	41.10	N/A ,
30 min	30	5.4	7.3	8.3	9.8	10.8	11.6	14.1	16.8	18.6	21.1	23.2	24.9	43.4	47.20	50.40	N/A ,
60 min	60	7.2	9.6	10.8	12.6	13.8	14.8	17.7	21.0	23.0	25.9	28.4	30.4	53.4	58.00	61.70	N/A ,
2 hour	120	9.5	12.5	14.0	16.2	17.7	18.8	22.3	26.1	28.6	31.9	34.8	37.0	65.8	71.20	75.60	N/A ,
3 hour	180	11.2	14.6	16.3	18.8	20.4	21.6	25.5	29.7	32.4	36.0	39.2	41.6	74.3	80.30	85.20	N/A ,
4 hour	240	12.7	16.3	18.2	20.9	22.6	23.9	28.1	32.6	35.4	39.3	42.6	45.1	81.1	87.40	92.60	N/A ,
6 hour	360	14.9	19.1	21.2	24.1	26.1	27.5	32.1	37.0	40.1	44.3	47.9	50.7	91.6	98.60	104.30	N/A ,
9 hour	540	17.7	22.3	24.6	28.0	30.1	31.7	36.8	42.1	45.5	50.1	54.0	56.9	103.4	111.10	117.50	N/A ,
12 hour	720	19.9	24.9	27.4	31.0	33.3	35.1	40.5	46.2	49.7	54.6	58.7	61.8	112.8	121.00	127.80	N/A ,
18 hour	1080	23.5	29.2	32.0	35.9	38.5	40.4	46.3	52.5	56.4	61.6	66.0	69.4	127.4	136.50	143.90	N/A ,
24 hour	1440	26.4	32.6	35.6	39.9	42.6	44.6	50.9	57.5	61.6	67.1	71.8	75.3	138.9	148.60	156.60	184.20
48 hour	2880	32.4	39.5	43.0	47.9	51.1	53.4	60.6	68.0	72.6	78.8	84.0	87.9	153.7	163.50	171.50	199.10

Notes:

Larger margins of error for 1, 2 ,5 and 10 minute values and for 100 year return periods M560: 12.6 M52d: 48 M560/m52d: 0.26

			Return Period (years)														
Dura	tion	1/2	1	2	3	4	5	10	20	30	50	75	100		1in5 mm/hr	1in30 mm/hr	1in100 mm/hr
5 min	5	3.0	4.1	4.7	5.6	6.2	6.7	8.2	9.8	10.9	12.5	13.9	15.0	1	80.64	131.04	180.00
10 min	10	4.1	5.8	6.6	7.8	8.6	9.2	11.4	13.8	15.2	17.4	19.3	20.9		55.44	91.44	125.28
15 min	15	4.9	6.7	7.7	9.2	10.2	10.9	13.4	16.2	18.0	20.5	22.8	24.5		43.68	72.00	97.92
30 min	30	6.5	8.8	10.0	11.8	13.0	13.9	16.9	20.2	22.3	25.3	27.8	29.9	1	27.84	44.64	59.76
60 min	60	8.6	11.5	13.0	15.1	16.6	17.8	21.2	25.2	27.6	31.1	34.1	36.5	1	17.76	27.60	36.48
2 hour	120	11.4	15.0	16.8	19.4	21.2	22.6	26.8	31.3	34.3	38.3	41.8	44.4		11.28	17.16	22.20
3 hour	180	13.4	17.5	19.6	22.6	24.5	25.9	30.6	35.6	38.9	43.2	47.0	49.9	1	8.64	12.96	16.64
4 hour	240	15.2	19.6	21.8	25.1	27.1	28.7	33.7	39.1	42.5	47.2	51.1	54.1		7.17	10.62	13.53
6 hour	360	17.9	22.9	25.4	28.9	31.3	33.0	38.5	44.4	48.1	53.2	57.5	60.8	1	5.50	8.02	10.14
9 hour	540	21.2	26.8	29.5	33.6	36.1	38.0	44.2	50.5	54.6	60.1	64.8	68.3	1	4.23	6.07	7.59
12 hour	720	23.9	29.9	32.9	37.2	40.0	42.1	48.6	55.4	59.6	65.5	70.4	74.2		3.51	4.97	6.18
18 hour	1080	28.2	35.0	38.4	43.1	46.2	48.5	55.6	63.0	67.7	73.9	79.2	83.3	1	2.69	3.76	4.63
24 hour	1440	31.7	39.1	42.7	47.9	51.1	53.5	61.1	69.0	73.9	80.5	86.2	90.4]	2.23	3.08	3.77
48 hour	2880	38.9	47.4	51.6	57.5	61.3	64.1	72.7	81.6	87.1	94.6	100.8	105.5]	1.34	1.82	2.20

Rainfall Intensities increased by 20% to allow for Global Warming

	1	2	3	4	5	6
Time	Storm Frequency & Duration	Rainfall	Rainfall Intensity	Potential Run-off From Developed Site	Allowable Run- off From Developed Site	Storage Requirement
(mins)		(mm)	(mm/hr)	(l/s)	(l/s)	(m3)
5	M100-5 min	15.00	180.00	729.59	2.0	218.3
10	M100-10 min	20.88	125.28	507.80	2.0	303.5
15	M100-15 min	24.48	97.92	396.90	2.0	355.4
30	M100-30 min	29.88	59.76	242.23	2.0	432.4
60	M100-60 min	36.48	36.48 36.48		2.0	525.1
120	M100-2 hr	44.40	22.20	89.98	2.0	633.5
180	M100-3 hr	49.92	16.64	67.45	2.0	706.8
240	M100 - 4hr	54.12	13.53	54.84	2.0	760.9
<u>360</u>	<u>M100-6 hr</u>	<u>60.84</u>	<u>10.14</u>	<u>41.10</u>	<u>2.0</u>	<u>844.6</u>
540	M100-9 hr	68.28	7.59	30.75	2.0	931.5
720	M100-12 hr	74.16	6.18	25.05	2.0	995.7
1080	M100-18 hr	83.28	4.63	18.75	2.0	1085.6
1440	M100-24 hr	90.36	3.77	15.26	2.0	1145.7
2880	M100-2day	105.48	2.20	8.91	2.0	1193.6
	Allowable Run-off Paving Roof	2 <u>Area</u> 8263 6329	I/s <u>Factor</u> 1 1	<u>Total</u> 8263 6329	m ² m ²	

23D047	- Surface	Water	Attenutation	Calculation	1-100 + 20%
LUDUTI	- Ourrace	valuer	Allenulation	Valculation	1-100 · 20/0

Total Area

14592

m²

		_		
PROJECT REF: 23D047				
LOCATION: Ballymakenny, Louth County				
DATE: 4.12.23				
CREATED BY:				
SYSTEM PARAMETERS			STORMTECH SYSTEM DETAIL	
Required Total Storage	425 m ³		StormTech Chamber Model	MC4500
Stormtech chamber model	MC4500		Unit Width	2.54 m
Filtration Permeable Geo or Impermeable Geo	Filter geo		Unit Length	1.23 m
Number of Isolator Rows (IR)	1		Unit Height	1.525 m
			Min Cover Over System	0.3 m
SITE PARAMETERS			Max Cover Over Chamber	2.1 m
Stone Porosity	40%		Chamber Internal Storage Vol.	3.01 m
Excavation Batter Angle (degrees)	60 °	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0 m
Stone Above Chambers	0.3 m	0.30		
Stone Below Chambers	0.23 m	0.23		
n-between Row Spacing	0.30 m	0.23	STONE AND EXCAVATION DETAIL	
Additional Storage outside Excavation. E.g manholes, Header Pipe	0 m ³		Volume of Dig for System	874 n
			Width at base	15.00 m
HEADER PIPE			Width at top	17.37 m
s Header pipe required within excavation	No		Length at base	25.00 m
Drientation of Header Pipe	Parrallel to IR		Length at top	27.37 m
Diameter of Header Pipe	0.225 m		Depth Of System	2.06 m
ength of Header Pipe	0 m		Area of Dig at Base of System	375 m
			Area of Dig at Top of System	476 m
CHAMBER SYSTEM DIMENSIONS	Calculated Adop	ted	Void Ratio	60%
Number of Rows		5 ea	Stone Requirement - m3	590 m
Number of units per Row		18 ea	Stone Requirement - tonne	968 to
System Installed Storage Depth (effective storage depth)	2.055	m		
Fank overall installed Width at base	14.50	15 m		
Tank overall installed Length at Base	24.3	25 m		
Tatal Effective System Starses	501 3	21 1		

PROJECT REF: 23D047				
LOCATION: Ballymakenny, Louth County				
DATE: 4.12.23				
CREATED BY:				
YSTEM PARAMETERS			STORMTECH SYSTEM DETAIL	
equired Total Storage	285 m ³		StormTech Chamber Model	MC4500
tormtech chamber model	MC4500		Unit Width	2.54 m
Itration Permeable Geo or Impermeable Geo	Filter geo		Unit Length	1.23 m
umber of Isolator Rows (IR)	1		Unit Height	1.525 m
			Min Cover Over System	0.3 m
TE PARAMETERS			Max Cover Over Chamber	2.1 m
tone Porosity	40%		Chamber Internal Storage Vol.	3.01 m
xcavation Batter Angle (degrees)	60 °	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0 m
tone Above Chambers	0.3 m	0.30		
tone Below Chambers	0.23 m	0.23		
-between Row Spacing	0.30 m	0.23	STONE AND EXCAVATION DETAIL	
dditional Storage outside Excavation. E.g manholes, Header Pipe	0 m ³		Volume of Dig for System	490 m
			Width at base	20.00 m
EADER PIPE			Width at top	22.37 m
Header pipe required within excavation	No		Length at base	10.00 m
rientation of Header Pipe	Parrallel to IR		Length at top	12.37 m
iameter of Header Pipe	0.225 m		Depth Of System	2.06 m
ength of Header Pipe	0 m		Area of Dig at Base of System	200 m
LANDED SYSTEM DIMENSIONS	Coloulated Adam	tod	Area of Dig at Top of System	277 m
	Calculated Adop	7 00	Stone Requirement - m3	346
umber of units per Row		6 63	Stone Requirement - toppe	568 to
unition of units por Now vetem Installed Storage Denth (effective storage denth)	2.055	m	oune requirement - tonne	500 10
ank overall installed Width at hase	20.18	20 m		
ank overall installed Length at Base	9.54	10 m		
anit overan metanetic Length at Dase	278 / 2	84.8		

PROJECT REF: 23D047				
LOCATION: Ballymakenny, Louth County				
DATE: 4.12.23				
CREATED BY:				
SYSTEM PARAMETERS			STORMTECH SYSTEM DETAIL	
Required Total Storage	65 m ³		StormTech Chamber Model	MC4500
Stormtech chamber model	MC4500		Unit Width	2.54 n
iltration Permeable Geo or Impermeable Geo	Filter geo		Unit Length	1.23 n
lumber of Isolator Rows (IR)	1		Unit Height	1.525 n
			Min Cover Over System	0.3 n
ITE PARAMETERS			Max Cover Over Chamber	2.1 n
Stone Porosity	40%		Chamber Internal Storage Vol.	3.01 n
xcavation Batter Angle (degrees)	60 °	Minimum Requirement	Header Pipe Internal Storage Vol in Excavation	0.0 r
tone Above Chambers	0.3 m	0.30		
Stone Below Chambers	0.23 m	0.23		
n-between Row Spacing	0.30 m	0.23	STONE AND EXCAVATION DETAIL	
dditional Storage outside Excavation. E.g manholes, Header Pipe	0 m ³		Volume of Dig for System	122 r
			Width at base	10.00 r
IEADER PIPE			Width at top	12.37 r
s Header pipe required within excavation	No		Length at base	4.00 r
Drientation of Header Pipe	Parrallel to IR		Length at top	6.37 r
Diameter of Header Pipe	0.225 m		Depth Of System	2.06 r
ength of Header Pipe	0 m		Area of Dig at Base of System	40 r
			Area of Dig at Top of System	79 r
HAMBER SYSTEM DIMENSIONS	Calculated Adop	oted	Void Ratio	53%
lumber of Rows		3 ea	Stone Requirement - m3	95 r
lumber of units per Row		2 ea	Stone Requirement - tonne	156 t
ystem Installed Storage Depth (effective storage depth)	2.055	m		
ank overall installed Width at base	8.82	10 m		
ank overall installed Length at Base	4.62	4 m		
otal Effective System Storage	64.7	64.6 m ³		

Appendix E – Swept Path Analysis

(See accompanying drawings listed below)

		DRAWING / DO	CUMENT REGISTE	ER AND	ISSU	E SHEET								S	Sheet No	. 1
Project N	. 23D047		Day	11												
Project Na	LOUTH ADP HOUSING: BALLYMAKENNY		Year	24												-
Drg No.	Drawing / Document Name	Format	R.C. Sched. Sheets					Dr	awing Re	visions						
01 P	roposed Drainage Layout	A1		P												
03 P	roposed Watermain Layout	A1		Р												
04A li	ish Water Foul & Surface Drainage Details - Sheet 1	A1		Р												
04B	ish Water Foul & Surface Drainage Details - Sheet 2	A1		P	_											
04C II	ish Water Foul & Surface Drainage Details - Sheet 4	A1		P												
05A II	ish Water Watermain Details - Sheet 1	A1		Р												
05B II	ish Water Watermain Details - Sheet 2	A1		Р												
05C II	ish Water Watermain Details - Sheet 3	A1		P	_									_		
05D II	roposed Cycling & Pedestrian Crossing Lavout	A1 A1		P												_
07 P	roposed Swept Path Analysis Layout	A1		P												
					_											
					_											
					_											
					_											
					_									_		
							+							+		
					-									+		_
					_									_		
																_
					_											
					_									_		
					_											
					_									_		
					_								+	+		
													++	+		-
L				\square			++				+		++	+		$-\!\!\!\!-\!\!\!\!$
				+++	_		+						+	++		
\vdash					-		+++						+	++		_
														+		_
	Distribution	Initials	Name						No. of co	pies						
Client			L.C.C.	1												
Architect	anager		EML Architects	1			+					+	$+ \top$	$+ \mp$		
Quantity	Surveyor				-		+					+	+	+		_
Main Con	Head Office															
Mech / F	Site															
Structura	Engineer		H.H.P	1			+					++	+	++		
Planning .	Authority		L.C.C.	1												
Irish Wate	r						+					++	++	+	-	
Construct	ion Manager				_											_
Tank Cop	/															
		ISSUED FOR		P										+		_
HAYF	S HIGGINS PARTNERSHIP	DOCUMENT TYPE		EM												
-	Chartered Engineers	R.C SCHEDULE														
The Gla	erupeet Managers	Issued For				Symbo	ла кеу					D	ocumen	t Type		
	T. 01 - 661 2321, F. 01 - 662 5804	Preliminary A PI	anning P Measurem	ent M							Pr	ints	PR	E	mail	EM
	E. admin@haveshiggins.ie	Information I T	ender T Constructi	ion c							Di	sks	CD	Joload S	Share Dr	ive up

Appendix F – Site Investigation Report

S.I. Ltd Contract No: 6182

Client:Louth County CouncilEngineer:Doherty Finegan KellyContractor:Site Investigations Ltd

Ballymakenny West, Drogheda, Co. Louth Site Investigation

Prepared by:

.....

Stephen Letch

Issue Date:	01/12/2023
Status	Final
Revision	0

Contents:

1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	4
5.	Ground Conditions	4
6.	Recommendations and Conclusions	5

Appendices:

- 1. Cable Percussive Boreholes Logs
- 2. Trial Pit and Dynamic Probe Logs and Photographs
- 3. California Bearing Ratio Test Results
- 4. Soakaway Test Results
- 5. Slit Trench Logs
- 6. Groundwater Monitoring
- 7. Geotechnical Laboratory Test Results
- 8. Environmental Laboratory Test Results
- 9. Waste Classification Report
- 10. Survey Data

1. Introduction

On the instructions of Doherty Finegan Kelly, Site Investigations Ltd (SIL) were appointed to complete a site investigation at Ballymakenny West, Drogheda, Co. Louth. The investigation was for a residential development on the site and was completed on behalf of the Client, Louth County Council. The investigation was completed in October 2023.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

Ballymakenny West is located to the north of Drogheda town centre. The map on the left shows the location of Drogheda in south Co. Louth and the second map shows the site location in the town.

3. Fieldwork

All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. The fieldworks comprised the following:

- 2 No. cable percussive boreholes
- 10 No. trial pits with Dynamic Probes
- 7 No. California Bearing Ratio tests
- 2 No. soakaway tests
- 7 No. slit trenches
- Groundwater monitoring

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 2 No. locations using a Dando 150 rig and constructed 200mm diameter boreholes. The boreholes terminated at similar depths of 8.70mbgl and 7.80mbgl respectively after an hour and a half chiselling was completed and no further progress was made. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 1.00mbgl where N=5-(1,1/1,1,2,1)). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 8.70mbgl where N=50-(25 for 5mm/50 for 5mm)).

At BH01, a groundwater standpipe was installed in the borehole to allow for long term monitoring of the water table. This consists of a slotted pipe with a gravel surround response zone to allow for the water the equalise in the standpipe.

The cable percussive borehole logs are presented in Appendix 1.

3.2. Trial Pits with Dynamic Probes

10 No. trial pits were excavated using a tracked excavator. The strata were logged and photographed by SIL geotechnical engineer and groundwater ingresses and pit wall stability was also recorded. Representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing.

Adjacent to the trial pits, dynamic probes were completed using a track mounted Competitor 130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method

comprising a 50kg weight, 500mm drop height and a 50mm diameter (90°) cone. The number of blows required to drive the cone each 100mm increment into the sub soil is recorded in accordance with the standards. The dynamic probe provides no information regarding soil type or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most relevant to Irish soil conditions and within this paper the following equations were included:

> Granular Soils: DPH N₁₀₀ x 2.5 = SPT N value Cohesive Soils: $C_u = 15 \times DPH N_{100} + 30 \text{ kN/m}^2$

These equations present a relationship between the probe N_{100} value and the SPT N value for granular soils and the undrained shear strength of cohesive soils.

The trial pit and dynamic probe logs and photographs are presented in Appendix 2

3.3. California Bearing Ratio tests

At 7 No. trial pits, undisturbed cylindrical mould samples were taken to complete a California Bearing Ratio test in the laboratory. The result facilitates the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'.

The CBR test results are presented in Appendix 3.

3.4. Soakaway Tests

Adjacent to TP05 and TP10, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test results are presented in Appendix 4.

3.5. Slit Trenches

Slit trenching was completed at 7 No. locations and was completed by hand digging with machine assistance. 5 No. trenches were completed in the soil bund to the east of the site and ST06 and ST07 were completed in the main part of the site.

The slit trench logs with photographs are presented in Appendix 5.

3.6. Groundwater Monitoring

Following the completion of the fieldworks, a groundwater measurement was completed. The measurement was completed using a dip tape with a sensor at the end, which was lowered into the standpipe and set off a buzzer when the groundwater was encountered.

The groundwater reading is presented in Appendix 6.

3.7. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 10.

4. Laboratory Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 5 No. Moisture contents
- 5 No. Atterberg limits
- 5 No. Particle size gradings with 3 No. hydrometers
- 5 No. pH and sulphate content

Environmental testing was completed by ALS Environmental Ltd. and consists of the following:

• 4 No. Suite I analysis

The geotechnical laboratory test results are presented in Appendix 7 with the environmental tests reported in Appendix 8 and a Waste Classification Report in Appendix 9.

5. Ground Conditions

5.1. Overburden

The natural ground conditions are dominated by brown slightly sandy slightly gravelly silty CLAY with cobble and boulder content increasing with depth. TP01 and TP07 to the west of the site recorded thin bands of silty sandy GRAVEL at 1.30mbgl and 1.50mbgl and were 1.00m and 0.70m thick.

BH01 recorded a low SPT N-value of 5 at 1.00mbgl and then 27 at 2.00mbgl and 30 or greater from 3.00mbgl and below. BH02 recorded a refusal on a boulder at 1.00mbgl, then 17, 19 and 27 at 2.00mbgl, 3.00mbgl and 4.00mbgl before 35 or greater values were recorded.

5.2. Groundwater

No groundwater was recorded in the boreholes during drilling but was recorded at 0.80mbgl in TP06 and 2.20mbgl in TP01 and TP07. The ingresses at TP06 and TP07 were recorded as slow ingresses whilst TP01 was recorded as a rapid ingress.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

BH01 encountered soft brown slightly sandy slightly gravelly silty CLAY at 1.00mbgl with a SPT N-value of 5. Using a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices, the SPT N-value can be used to calculate the undrained shear strength. With the low plasticity indexes recorded in the laboratory for the soils, this correlation is C_u =6N. Therefore, using the lower value of 5, this indicates that the undrained shear strength of the CLAY is 30kN/m². This can be used to calculate the ultimate bearing capacity, and this has

been calculated to be 171kN/m². Finally, a factor of safety is applied and with a factor of 3, an allowable bearing capacity of 57kN/m² would be anticipated using the lowest SPT value.

The SPTs increase to 17 to 27 at 2.00mbgl and this indicates an undrained shear strength of $102kN/m^2$, ultimate bearing capacity of $556kN/m^2$ and an allowable bearing capacity of $185kN/m^2$.

For analysis of bearing capacities from the dynamic probes, the N_{100} values are used as follows in cohesive soils. The undrained shear strength (C_u) is calculated using the N_{100} value as per the equation in Section 3.3. This can then be used in calculations to work out the ultimate bearing capacity (ULS) and when a factor of safety of 3 is applied, the allowable bearing capacity (ABC) can be provided. The table below shows the allowable bearing capacities for N_{100} values 1 to 10 at 1.00mbgl.

N ₁₀₀ Value	Cohesive Soils			
	Cu	ULS	ABC	
1	45	248	83	
2	60	330	110	
3	75	400	135	
4	90	480	160	
5	105	555	185	
6	120	630	210	
7	135	705	235	
8	150	780	260	
9	165	855	285	
10	180	930	310	

All capacities shown are in kN/m².

The probes recorded N_{100} values of 2 or greater at 1.00mbgl and this would indicate an allowable bearing capacity of 110kN/m², which is greater than the SPT N-values would indicate. It would be recommended that all founding strata to be inspected by a suitably qualified Engineer prior to pouring the foundations.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

• Foundations are to be constructed on a level formation of uniform material type (described above).

- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- All bearing capacity calculations allow for a settlement of 25mm.
- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.

The trial pit walls generally remained stable during excavation; however, TP01, TP08 and TP09 recorded minor instability so all excavations should be checked immediately and battered back accordingly. Regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall and possible nearby construction sites.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was only recorded in three trial pits at 0.80mbgl and 2.20mbgl.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow to medium. If granular soils are

encountered in shallow excavations, then the possibility of water ingressing into an excavation increase.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Pavement Design

The CBR test results in Appendix 3 indicate a CBR value of 10.8% to 13.9%.

The CBR samples tests were recovered at 0.50mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.4. Soakaway Tests

The soakaway tests failed as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The test was terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e., well compacted clay soils.

6.5. Contamination

Environmental testing was carried out on four samples from the investigation and the results are shown in Appendix 8. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline[™] software shows that the material tested can be classified as non-hazardous material. The samples recorded toluene above the limits of detection but this is not in liquid phase and therefore, HP3 can be discounted.

Following this analysis of the solid test results, the leachate disposal suite results indicate that the soils tested would generally be able to be treated as Inert Waste.

Four samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be

stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

6.6. Aggressive Ground Conditions

The chemical test results in Appendix 7 indicate a general pH value between 7.63 and 8.07, which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was $127mg/l as SO_3$. The BRE Special Digest 1:2005 - Concrete in Aggressive Ground' guidelines require SO₄ values and after conversion (SO₄ = SO₃ x 1.2), the maximum value of 152mg/l shows Class 1 conditions and no special precautions are required.

6.7. Radon Gas

The Environmental Protection Agency (EPA) has updated the Radon gas exposure map and this is available to view on the EPA website. This shows the possible exposure to radon gas with the bedrock geology, subsoil geology, soil permeability and aquifer type analysed to produce the map. Although the map is based on residential homes, the map below shows that part of the site falls within the medium level of 1 in 10 homes have a possibility of high radon exposure. Measures should be taken in the form of radon protection barriers to protect from radon exposure in the new structure.

EPA map identifying possible Radon exposure. https://gis.epa.ie/EPAMaps/Radon?&lid=EPA:RadonRiskMapofIreland
Appendix 1 Cable Percussive Borehole Logs

Contra 618	ict No: 82	Cable Percussion Borehole Log													Bo	orehole BH0	No: 1	
Contrac	ct:	Ballymakenny V	Vest					East	ing:		70908	9.053		Da	ate Started:	23/10	/2023	
Locatio	n:	Drogheda, Co.	_outh					Nort	hing	:	77703	3.284		Da Co	ate ompleted:	23/10	/2023	
Client:		Louth County C	ouncil					Elev	atior	n:	30.64			Di	rilled By:	D. Cla	arke	
Engine	er:	Doherty Finega	n Kelly					Bore Diar	ehole netei	e r:	200mi	m		St	tatus:	FINA	_	
Depth	n (m)		Stratum	n Descrip	tion			Lege	nd	evel	(mOD)		Sample	es ai	nd Insitu Tes	sts	Water	Backfill
Scale	Depth	Brown slightly s	andy gra	velly silty	CLAY	with h	igh	<u>x</u> ~		30.5 –	Depth	Dept	h lyp	be	Result		Ounce	
0.5	0.20	Soft becoming f gravelly silty CL	irm brow AY with I	n slightly ow cobb	sandy e cont	slightl ent.	У		0 	30.0								
1.0									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	29.5 — 		1.00 1.00) B) C	;	DC01 N=5 (1,1/1,	1,2,1)		
1.5									0 	29.0		2.00			DC02			
2.0	2.20	Stiff brown sligh with low cobble	lty sandy content.	/ slightly	gravell	y silty (CLAY			28.5 — - - -	28.44	2.00		;	N=27 (2,3/4	,7,9,7)		
3.0 -									0 	28.0 — - - 27.5 —		3.00) B		DC03			
3.5 —	3.40	Very stiff brown silty CLAY with	grey slig nigh cobl	htly sand ble conte	ly sligh nt.	tly grav	velly				27.24	0.00			(6,8/8,9,1	0,9)		
4.0		ilty CLAY with high cobble content.							0 X X X X Y Y Y Y	26.5 —		4.00 4.00) B) C	;	DC04 N=30 (6,7/7	,7,8,8)		
4.5										26.0 — 					5.005			
5.0									0 	25.5 —		5.00) C	;	DC05 N=31 (7,7/7	,8,8,8)		
6.0 -										25.0 — - - 24 5 —		6.00) B		DC06			
6.5									0 X X Y Y Y Y Y Y	24.0		0.00		,	(8,8/9,9,1	0,9)		
7.0										23.5 — 		7.00 7.00) B) C	;	DC07 N=38 (5,7/9,11,8	8,10)		
8.0									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23.0		8.00) В		DC08			
8.5 —	8.60	Obstruction - po	ssible br	ulders					0 	22.5 — - - 22.0 —	22.04	8.00		;	N=35 (7,7/8,10,	8,9) or		
9.0	8.70		End of Bo	prehole at 8	70m					 21.5	21.94	0.7		,	5mm/50 for	5mm)		
9.5										 21.0 								
	Chiselling: Water Strikes: Water Details:					tails:	Inc	tallat	ion.		Backfi			Remarke		Leaend [.]		
	Ì)	From: To: Time 8.60 8.70 01:3	Strike: F	Rose: Dep Seal	Date 23/10	Hole Depth: 8.70	Water Depth: Dry	From: 0.00 2.00	To: 2.00 8.00	Pipe Solid Slotte	: From: d 0.00 ed 1.00	To: 1.00 B 8.70	Type: entonite Gravel	Bore to of	ehole terminate	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ed urbed onmental SPT

Contra	act No: 82	Cable Percussion Borehole Log													Bo	orehole BH0	No: 2				
Contrac	ct:	Ballyma	akenr	ny We	est						Eas	ting:		70893	31.60)7		Date Started:	24/10	/2023	
Locatio	n:	Droghe	da, C	o. Lo	buth						Nort	hing		77696	8.08	34		Date Completed:	24/10	/2023	
Client:		Louth C	count	у Соі	uncil						Elev	atio	า:	28.85				Drilled By:	D. Cla	arke	
Engine	er:	Doherty	/ Fine	egan	Kelly						Bore Diar	ehole nete	e r:	200m	m			Status:	FINA	_	
Dept	h (m)			:	Stratu	m Des	scriptio	on			Lege	end_	_evel	(mOD)		Sa	mples	and Insitu Tes	sts	Water Strike	Backfill
Scale	Depth	Brown s	slight	ly sar	ndy gr	avelly	silty 0	CLAY	with h	igh	x	× 0		Depth		ptn	туре	Result			
0.5	0.40	Brown s	conte slight ble c	ly sar onter	ndy sli nt.	ightly	gravel	ly silty	CLA	/ with	× ×		28.5	28.45							
1.0											x 0 x 0 x		28.0		1.	00	B C	DC09	or		
1.5 —													27.5 –				Ũ	85mm/50 15mm	for)		
2.0	1.90	Stiff bro	wn s	lighlty	y sanc	dy slig	htly gr	avelly	silty 0	CLAY	x 0 X		27.0	26.95	2.	00	В	DC10	115)		
2.5 —		With low	000		ontern						x 0 x		26.5 –		2.	.00	C	11-17 (3,3/4,	4,4,0)		
3.0	3.10	Stiff ber	comir	na ve	rv stiff	arev	brown	slight	llv san	idv			26.0	25.75	3.	00	B C	DC11 N=19 (3.4/5.	.4.5.5)		
3.5 –		slightly	grave	elly si	ilty CL	AY wi	th higi	n cobb	ole cor	ntent.	20 X 0 X 0		25.5	•			-				
4.0											2012 2012 2012	o XICIXI	25.0		4. 4.	00	B C	DC12 N=27 (5,6/7,	7,6,7)		
4.5											20 20 20 20 20 20 20 20 20 20 20 20 20 2	o XI XI VI VI	24.5								
5.0											0 X 0 X		24.0 —	- - -	5. 5.	00	B C	DC13 N=35			
5.5													23.5	-				(4,7/8,9,8	,10)		
6.0											x x x x x x x x x x x x x x x x x x x		23.0	•	6. 6.	00 00	B C	DC14 N=40	1 1 0)		
6.5											20 X0		22.5					(5,8/9,10,1	1,10)		
7.0											20 20 20 20 20 20 20 20 20 20 20 20 20 2	o Xe Xe	22.0		7. 7.	00 00	B C	DC15 N=37	0.0)		
7.5 -	7.70	Obstruc	tion -	- pos	sible t	ooulde	ers.						21.0	21.15	7.	80	С	50 (25 f	or		
8.0	7.00				End of I	Borehole	e at 7.80)m					20.5 —	21.00				5mm/50 for	5mm)		
8.5													20.0	- - -							
9.0																					
9.5																					
				1		-		Par	zfill.		Domester		Learney.								
		From: 1.10 1 7.70 7	To: .30 (.80 (j. Time: 01:00 01:30	vva Strike:	Rose:	KES: Depth Sealed	Date: 24/10	Hole Depth: 7.80	Water Depth: Dry	From:	To:	Pipe	e: From: 0.00	Бас То: 7.80	KIIII: Typ Arisi	be: Bo ings to	remarks: orehole terminate obstruction.	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water	urbed onmental
~																				S: Split sp	ioon SPT

Appendix 2

Trial Pit and Dynamic Probe Logs and Photographs

Contra 61	ct No: 82	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I TP0	No: 1
Contra	ct:	Ballymakenny West	Easting:		708908.	947	Date	:	24/10/2023	
Locatio	on:	Drogheda, Co. Louth	Northing	:	776989.4	400	Exca	vator:	13T Tracked Excavator	
Client:		Louth County Council	Elevatior	ו:	28.92		Logg	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	Dimensio (LxWxD)	ons (m):	4.90 x (0.70 x 3.0	0 Scale	e:	1:20	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Samp	les	_	Probe	Water
Scale: Scale:	0.25 0.40 0.70 1.30 2.30	Stratum Description TOPSOIL. Soft light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Soft light brown grey sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Firm grey brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Grey brown silty sandy fine to coarse, angular to subangular GRAVEL of limestone with high cobble content. Sand is fine to coarse. Cobbles are angular to subangular of limestone. Stiff grey brown slightly sandy slightly gravelly silty CLAY with medium cobble content. Sand is fine to coarse, angular to subangular of limestone. Stiff grey brown slightly sandy slightly gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles are angular to subangular of limestone. Pit terminated at 3.00m		Scale 28.5 28.0 27.5 27.5 27.0 26.5 26.0	Control (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Depth 0.50 0.50 1.00 2.00 2.50	Type CBR ES B B		Probe	Strike
-				25.0 -	-					
		Termination: Pit Wall Stability: Groundwate	r Rate: R	emarl	ks:			Kev:		
		Scheduled depth. Minor pit wall 2.20 Rapid instability.	-				 	B = Bull D = Sma CBR = Una ES = Envir	disturbed all disturbed disturbed CBR ronmental	

Contrac 61	ct No: 82	Trial Pit and	Dyna	mic	Pr	obe	Log			Trial Pit N TP02	No:
Contra	ct:	Ballymakenny West	E	asting:		708997.0	011	Date:		24/10/2023	
Locatio	on:	Drogheda, Co. Louth	N	lorthing		777034.3	300	Exca	vator:	13T Tracked Excavator	
Client:		Louth County Council	E	levatior	n: 2	29.74		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	D)imensic _xWxD)	ons (m):	4.80 x 0).70 x 3.00	Scale):	1:20	
Level	(mbgl)	Stratum Description	L	eaend	Level	(mOD)	Sampl	es	F	Probe	Water
Scale:	Depth	TOPSOIL			Scale:	Depth:	Depth	Туре			Strike
	0.30 0.80 2.50 3.00	Soft light brown slightly sandy slightly gravell CLAY with low cobble content. Sand is fine to Gravel is fine to coarse, angular to subangula limestone. Firm becoming stiff brown slightly sandy sligf gravelly silty CLAY with high cobble and low content. Sand is fine to coarse. Gravel is fine coarse, angular to subangular of limestone. (and boulders are angular to subangular of lim (up to 350mm diameter). Stiff light grey slightly sandy slightly gravelly : CLAY with low cobble and boulder content. S fine to coarse. Gravel is fine to coarse, angul subangular of limestone. Cobbles and boulde angular to subangular of limestone (up to 250 diameter). <u>Pit terminated at 3.00m</u>	ly silty o coarse. ar of htly boulder e to Cobbles mestone silty Sand is lar to ers are 0mm	춙즤ᇰ건승건승건충건충건충건충건충건충건충건충건충건충건충건충건충건충건충건충건충건	29.5 - 29.0 - 28.5 - 28.0 - 27.5 - 27.5 - 27.0 -	29.44 28.94 28.94 28.94 28.94	0.50 1.00 2.00 2.80	B	0 1 1 2 2 2 3 3 2 3 4 4 5 5 5 4 5 5 4 5 5 1 1 7 8 9 11 7 8 9 11 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1	14 21 25 25 25 27 35	
					26.0 -	-					
				Data:	omer						
		Scheduled depth. Pit walls stable.	Dry	-	ernark				B = Bulk = Sma BR = Uno ES = Envir	a disturbed all disturbed disturbed CBR onmental	

Contra 61	ct No: 82	Trial Pit and I	Dynami	сP	robe	Log			Trial Pit I	No: 3
Contra	ct:	Ballymakenny West	Eastin	g:	709036.	445	Date:		24/10/2023	
Locatio	on:	Drogheda, Co. Louth	Northi	ng:	777056.	301	Exca	vator:	13T Tracked Excavator	
Client:		Louth County Council	Eleva	ion:	30.33		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	Dimer (LxW>	sions D) (m):	5.10 x	0.70 x 3.00	Scale):	1:20	
Level	(mbgl)	Stratum Description	Leger	Lev	el (mOD)	Sampl	es		Probe	Water
Scale:	Depth			Sca	e: Depth:	Depth	Туре			Strike
	0.30	Soft light brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to Gravel is fine to coarse, angular to subangular limestone. Cobbles are angular to subangular timestone. Firm becoming stiff brown slightly sandy slight gravelly silty CLAY with medium cobble and be content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Co and boulders are angular to subangular of limestone.	r of conserved of the second s	30.0 29.5 29.5		0.50	CBR	1 2 3 3 2 3 4 4 4 5		
1.0 — - - 1.5 — - - - - -	· · · ·	(up to 450mm diameter).	11년	କ୍ଟି ବିକ୍ ଅନ୍ମ ନିର୍ଦ୍ଧ କରୁ ଅନୁ ଅନ୍ତି ଅନୁ		1.00	В	5 6 7 7 8 7 11 11	14 3	
2.0	2.40	Stiff light grey slightly sandy slightly gravelly si CLAY with medium cobble content. Sand is fin coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles are angular subangular of limestone.	ilty a compared to the second	위하기위하기위하기 28.0 28.0 	 27.93 	2.00	В		3 14 16 17 17 24 27 27 27 27	
3.0 —	3.00			<u>~</u> 27.5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	; _ _ 	2.80	В		35	
		Pit terminated at 3.00m		27.0	- - - -					
3.5				26.5	- - - -					
		Termination: Pit Wall Stability: Grou	undwater Rate:	Rema	rks:		k	l Key:		
		Scheduled depth. Pit walls stable.	Dry	-			E E	3 = Bulk) = Sma CBR = Una ES = Envir	c disturbed all disturbed disturbed CBR ronmental	

Contrac 61	ct No: 82	Trial Pit and Dy	vnamic	Pr	obe	Log			Trial Pit M TP04	No: 1
Contra	ct:	Ballymakenny West	Easting:		709073.	883	Date:		24/10/2023	
Locatio	n:	Drogheda, Co. Louth	Northing	:	777076.	503	Excav	/ator:	13T Tracked Excavator	
Client:		Louth County Council	Elevatio	า:	30.48		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	Dimensi (LxWxD)	ons) (m):	4.80 x (0.70 x 3.00	Scale	:	1:20	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sample	es	F	Probe	Water
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth -	Гуре	0		Strike
-	0.30	Soft light brown slightly sandy slightly gravelly silt	y <u>Providence</u>		- - - 30.18			0 1 2		
0.5 —	0.50	CLAY with low cobble content. Sand is fine to coa Gravel is fine to coarse, angular to subangular of limestone. Cobbles are angular to subangular of limestone. Firm brown slightly sandy slightly gravelly silty CL	Irse.	30.0 -	29.98 	0.50	CBR	2 3 2		
 1.0 —		with high cobble and medium boulder content. Sa is fine to coarse. Gravel is fine to coarse, angular subangular of limestone. Cobbles and boulders ar angular to subangular of limestone (up to 350mm diameter).	ind Pool of the second	29.5	-	1.00	В	3 3 2 3 4		
- - 1.5 — -	1.30	Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY with medium cobble content. S is fine to coarse. Gravel is fine to coarse, angular subangular of limestone. Cobbles are angular to subangular of limestone.	Sand	29.0 -	- 29.18 			5 5 6 5 6 7		
2.0				28.5	-	2.00	В	11 10 11	3 14 21 24	
				28.0 -	-				28	
3.0	2.80 3.00	Stiff light grey slightly sandy slightly gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles are angular to subangular of limestone. Pit terminated at 3.00m		27.5	27.68 - 27.48 - - -	3.00	В			
3.5 — – – –				27.0 -	-					
			watar Data					(a) //		
		Scheduled depth. Pit walls stable. Dr	y -	kemarl	KS:		B D C E	s = Bulk = Sma BR = Uno S = Envir	disturbed all disturbed disturbed CBR conmental	

Contra 61	ct No: 82	Trial Pit and I	Dynai	mic	Pr	obe	Log			Trial Pit N TP05	No: 5
Contra	ct:	Ballymakenny West	E	asting:		708962.3	323	Date:		24/10/2023	
Locatic	on:	Drogheda, Co. Louth	N	orthing	:	776973.	124	Excav	vator:	13T Tracked Excavator	
Client:		Louth County Council	E	levatior	n:	29.32		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	D (L	imensio _xWxD)	ons (m):	5.30 x (0.70 x 3.00	Scale	:	1:20	
Level	(mbgl)	Stratum Description		eaend	Level	(mOD)	Sample	es	F	Probe	Water
Scale:	Depth				Scale	Depth:	Depth ⁻	Гуре		1000	Strike
-	0.30	Soft light brown sandy slightly gravelly silty C	CLAY.		29.0	- 29.02			0 0 2		
- 0.5 —		Sand is fine to coarse. Gravel is fine to coarse angular to subangular of limestone.	e, ×			-	0.50	CBR	2		
-	0.60	Firm grey brown sandy slightly gravelly silty C with medium cobble and low boulder content. fine to coarse. Gravel is fine to coarse, angula subangular of limestone. Cobbles and boulder angular to gubangular of limestone (up to 250	CLAY . Sand is ar to ar to ar to ar to ar to are		28.5	_ 28.72			3 3 2		
1.0		diameter).	1000 1000 1000 1000 1000 1000 1000 100			-	1.00	В	3 4 5 6		
- 1.5 —	1.50	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble conte	ہے۔ v slightly کی ent and		28.0 -	_ _ 27.82			6 7 11		
-		occasional gravel laminas. Sand is fine to coa Gravel is fine to coarse, angular to subangula limestone. Cobbles are angular to subangular limestone.	arse.		27.5	_			1: 1: 12 12 11	3	
2.0			1911년 1월 19 1911년 1월 1911년 1월 1911 1911년 1월 1911년 1월 191		27.0 -	-	2.00	В	11 10 11		
- 2.5 — -	2.40	Stiff grey brown slightly sandy slightly gravelly CLAY with medium cobble and boulder conte is fine to coarse. Gravel is fine to coarse, ang subangular of limestone. Cobbles and boulde	y silty			_ 26.92 _ _			1:	3 3 22 24	
-	2 00	angular to subangular of limestone (up to 350 diameter).	0mm 이상 아이 아이 아		26.5		2.80	В		24	
-	5.00	Pit terminated at 3.00m									
-					26.0 -	-					
3.5 -	-					-					
-					25.5	-					
		Termination Di Mull Oct 199							·		
		Scheduled depth. Pit walls stable.	Dry	-	ernark	.5.		B D	= Bulk	disturbed all disturbed	
9	Ľ							E	вк = Uno S = Envir	onmental	

Contra 61	ct No: 82	Trial Pit and Dyn	amic	Pr	obe	Log			Trial Pit I TP06	No: 5
Contra	ct:	Ballymakenny West	Easting:		709043.	881	Date:		24/10/2023	
Locatio	on:	Drogheda, Co. Louth	Northing	:	777008.	579	Excav	/ator:	13T Tracked Excavator	
Client:		Louth County Council	Elevatio	n:	30.34		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	Dimensi (LxWxD	ons) (m):	5.00 x (0.70 x 3.00	Scale	:	1:20	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sampl	es		Probe	Water
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth [·]	Гуре	0		Strike
	0.30	Soft light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone.		30.0 -	- - 30.04	0.50	CBR	0 0 2 2		
-	0.70	Firm brown slightly sandy slightly gravelly silty CLAY with high cobble content and occasional gravel laminas. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles		29.5	- - 29.64	0.00		2 3 3 3		▼
1.0 — 	1.20	Firm becoming stiff brown slightly sandy slightly			- - 29.14	1.00	В	5 5 6 6		
- 1.5 — - - -		gravelly silty CLAY with medium cobble and boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles and boulders are angular to subangular of limestone (up to 350mm diameter).	1.14:14:14:14:14:14:14:14:14:14:14:14:14:1	29.0 -	-			7 8 9 9 11	3	
2.0			· 제· 아제· 아제· 아제· 아제· 아제· (* 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10	28.0 -	-	2.00	В	11 11 10	15 14 21	
2.5	2 00			27.5		2.00	D		24 27 35	
3.0	3.00	Pit terminated at 3.00m		27.0 -	_ 27.34 _ _ _	3.00	В			
3.5				26.5	-					
		Termination: Dit Wall Stability Groupdwate	r Rate:	Comor	(e.					
		Scheduled depth. Pit walls stable. 0.80 Slow			<u></u>		B D C E	5 = Bulk 5 = Sma 5 = Sma 5 = Envir 5 = Envir	disturbed all disturbed disturbed CBR onmental	

Contra 61	ct No: 82	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I TP0 7	No: 7
Contra	ct:	Ballymakenny West	Easting:		708890.	153	Date:		24/10/2023	
Locatio	on:	Drogheda, Co. Louth	Northing	:	776904.	683	Excav	ator:	13T Tracked Excavator	
Client:		Louth County Council	Elevatio	n:	28.65		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	Dimensi (LxWxD)	ons (m):	4.20 x (0.70 x 3.00	Scale:		1:20	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sampl	es		Probe	Water
Scale:	Depth	TOPSOIL		Scale	: Depth:	Depth	Туре	1		Suike
	0.40 0.60 1.50 2.20 3.00	Firm light brown grey sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Firm grey brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Grey brown silty sandy fine to coarse, angular to subangular GRAVEL of limestone with high cobble content. Sand is fine to coarse. Cobbles are angular to subangular of limestone. Stiff grey brown slightly sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles are angular to subangular of limestone. Display the store of limestone. Display with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone.		28.5 - 28.0 - 27.5 - 27.0 - 26.5 - 26.5 - 26.0 - 25.5 -	 28.25 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 	0.50 0.50 1.00 2.00 2.50	B B	1 2 3 2 3 4 5 5 6 7 6 7 8 9 10 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15 10 11 12 13 14 15 16 17 18 10 11 11 12 13 14 15 16 17 18 19 10 11 12 <td< td=""><td>2 14 15 14 21 24 27 28 35</td><td></td></td<>	2 14 15 14 21 24 27 28 35	
_					_					
					-					
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remark	(s:		ĸ	ey:		
		Scheduled depth. Pit walls stable. 2.20 Slow	-		-		B D C	= Bulk = Sma BR = Una S = Envir	disturbed all disturbed disturbed CBR onmental	

Contra 61	ct No: 82	Trial Pit and D	ynami	c Pr	obe	Log			Trial Pit I TP08	No: 3
Contra	ct:	Ballymakenny West	Easting	g:	708960.	611	Date	:	24/10/2023	
Locatio	on:	Drogheda, Co. Louth	Northir	ıg:	776926.	812	Exca	vator:	13T Tracked Excavator	
Client:		Louth County Council	Elevati	on:	29.27		Logg	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	Dimen (LxWx	sions D) (m):	5.10 x (0.70 x 3.00	Scale	e:	1:20	
Level	(mbgl)	Stratum Description	Legen	Leve	l (mOD)	Sampl	es		Probe	Water
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Гуре	1		Ounce
	0.20	Soft light brown sandy slightly gravelly silty CLA Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Firm becoming stiff grey brown slightly sandy sli gravelly silty CLAY with medium cobble content. is fine to coarse. Gravel is fine to coarse, angula subangular of limestone. Cobbles are angular to subangular of limestone.	Y.	29.0 · 29.0 · 28.5 28.5 28.5 28.5 28.5 28.5	29.07 29.07 28.47 28.47 - - - - - - - - - - - - -	0.50	B	2 2 3 4 4 4 5 4 5 6 6 6 7 8 9 11	14	
2.0			1. 제시: 14:11 제시: 14:1 24:11 26:11 2	কি শুকি শুকি শুকি শুকি শুকি শুকি শুকি শু		2.00	В		19 21 24 24 24 35	
2.5	2.50	Stiff grey brown slightly sandy slightly gravelly si CLAY with high cobble and low boulder content. is fine to coarse. Gravel is fine to coarse, angula subangular of limestone. Cobbles and boulders angular to subangular of limestone (up to 250mr diameter).	ilty Sand ar to are m	26.5	26.77 	2.80	В			
3.0	3.00	Pit terminated at 3.00m	X	26.0 ·	26.27 					
3.5	-			25.5	-					
		Termination: Pit Wall Stability: Ground	dwater Rate:	Remar	ks:		ŀ	key:		
		Scheduled depth. Minor pit wall Instability.	Dry	-			E	B = Bulk D = Sma CBR = Una ES = Envir	disturbed all disturbed disturbed CBR onmental	

Contra 61	ct No: 82	Trial Pit and D	Dyna	mic	Pr	obe	Log			Trial Pit I	No:)
Contra	ct:	Ballymakenny West	E	Easting:		709011.0)28	Date:		24/10/2023	
Locatio	on:	Drogheda, Co. Louth	٦	Northing	:	776951.	722	Exca	/ator:	13T Tracked Excavator	
Client:		Louth County Council	E	Elevatior	n:	29.94		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	C (Dimensio (LxWxD)	ons (m):	5.90 x ().70 x 3.00	Scale	:	1:20	
Level	(mbgl)	Stratum Description	ĺ	Legend	Level	(mOD)	Sample	es	I	Probe	Water
Scale:	Depth	TOPSOIL.			Scale	Depth:	Depth -	Гуре	1		Strike
-	0.30	Soft light brown sandy slightly gravelly silty CL	LAY.			29.64			1 2 3		
- 0.5 — -	-	Sand is fine to coarse. Gravel is fine to coarse angular to subangular of limestone.	9, ×		29.5	_	0.50	CBR	3 4 4		
- - 1.0 —	0.80	Firm brown slightly sandy slightly gravelly silty with medium cobble and low boulder content. fine to coarse. Gravel is fine to coarse, angula subangular of limestone. Cobbles and boulder angular to subangular of limestone (up to 250r	y CLAY Sand is ar to rs are		29.0 -	29.14	1.00	В	5 6 7 7		
- - 1.5	-	diameter).	이 그 여 : 그 여 : 그 여 : 그 여 : 그 여 :		28.5	-			9	14 3 14 15	
- - 2.0 -	1.90	Stiff grey brown slightly sandy slightly gravelly CLAY with medium cobble content. Sand is fin coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles are angular subangular of limestone.	/ silty provide the second sec		28.0	28.04	2.00	В		17 21 24 26 35	
- 2.5	-		সাল বিজি বিজ বিজ বিজ বিজ বিজ বিজ বিজ বিজ বিজ বিজ বিজ বিজ		27.5	-	2.80	В			
3.0	3.00	Pit terminated at 3.00m	7		27.0	26.94 					
- 3.5	-				26.5	-					
-					26.0	-					
								1.			
		Termination: Pit Wall Stability: Grou Scheduled depth. Minor pit wall instability. Instability.	Undwater I	Rate: R	emark	(S:		B D C	iey: = Bulk = Sma :BR = Uno :S = Envir	disturbed all disturbed disturbed CBR	

Contrac 61	ct No: 82	Trial Pit and Dyn	amic	Pr	obe	Log			Trial Pit I TP1(No:)
Contra	ct:	Ballymakenny West	Easting:		709100.	507	Date:		24/10/2023	
Locatio	on:	Drogheda, Co. Louth	Northing	:	776994.	633	Excav	ator:	13T Tracked Excavator	
Client:		Louth County Council	Elevatio	า:	30.78		Logge	ed By:	M. Kaliski	
Engine	er:	Doherty Finegan Kelly	Dimensi (LxWxD)	ons (m):	7.00 x (0.70 x 3.00	Scale:	:	1:20	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sample	es	ł	Probe	Water
Scale:	Depth	TOPSOIL		Scale	: Depth:	Depth -	Гуре	0		Strike
_	0.20			30.5			1	0		
_	0.30	Soft light brown sandy slightly gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse,			- 30.40			2		
0.5	0.50	angular to subangular of limestone. Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY with medium cobble and boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular of limestone. Cobbles and boulders are angular to subangular of limestone (up to 1700mm diameter).		30.0 -	- 30.28 	0.50 0.50	CBR ES	2 2 2 2 4		
1.0				29.5	-	1.00	B	5 6 7 6 9		
1.5 — _ _ _				29.0 -	-		-	11 7 9	15	
2.0				28.5	-	2.00	B	8 12	27 24 23	
2.5	2.00			28.0 -		2.00	D		23 35	
	3.00	Pit terminated at 3.00m		27.5	-	3.00	D			
3.5				27.0 -	- - - -					
		Termination: Pit Wall Stability: Groundwate	er Rate:	Remarl	ks:		ĸ	ev:		
		Scheduled depth. Pit walls stable. Dry	-				B D C	= Bulk = Sma BR = Uno S = Envir	a disturbed all disturbed disturbed CBR onmental	

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

TP06 Sidewall

TP06 Spoil

TP07 Sidewall

TP07 Spoil

TP08 Sidewall

TP08 Spoil

TP09 Sidewall

TP09 Spoil

TP10 Sidewall

Appendix 3 California Bearing Ratio Test Results

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Louth Council
Site	Ballymakenny West, Drogheda
S.I. File No	6182 / 23
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	1st November 2023

CBR No	Depth	Sample	Lab Ref	Sample	Moisture Content	CBR Value (%)	Location / Remarks
	(mBGL)	No		Туре	(%)		
TP01	0.50	MK40	23/1835	В	9.5	13.1	
TP03	0.50	MK41	23/1836	В	14.6	13.7	
TP04	0.50	MK42	23/1837	В	10.0	13.9	
TP05	0.50	MK43	23/1838	В	8.8	12.7	
TP06	0.50	MK44	23/1839	В	11.5	13.8	
TP07	0.50	MK45	23/1840	В	9.7	12.8	
TP09	0.50	MK46	23/1841	В	14.4	10.8	

Appendix 4 Soakaway Test Results

			SOAKAWAY TES	<u>5T</u>		E Contraction							
Project Referen	100.	6182											
Contract name		Ballyr	nakoppy West										
	•	Dailyi	nakenny west										
Location:		Drogr	ieda, Co. Louin			E							
Test No:		1P05	U5 (10/2023										
Date:		24/10	10/2023										
Ground Condit	tions												
From	То												
0.00	0.30	TOPS	SOIL.										
0.30	0.60	Soft li	ght brown sandy slightly grave	Ily silty CLA	λY.								
0.60	1.50	Firm	grey brown slightly sandy slight	ly gravelly	silty CLAY	/ with medium							
		cobbl	e and low boulder content.										
1.50	2.10	Firm I	pecoming stiff grey brown sligh	itly sandy s	lightly grav	velly silty CLAY with							
	-	mediu	Im cobble content and occasio	nal gravel l	aminas.								
Elapsed Time	Fall of Water		Pit Dimensions (m)										
(mine)	(m)		l ength (m)	3 50	m	1							
0	1 10		Width (m)	0.30	m	-							
0.5	1 10		Dopth	0.70	m	-							
0.5	1.10		Deptii	2.10	111	-1							
1	1.10		water	,		4							
1.5	1.10		Start Depth of Water	1.10	m								
2	1.10		Depth of Water	1.00	m								
2.5	1.10		75% Full	1.35	m								
3	1.10		25% Full	1.85	m								
3.5	1.10		75%-25%	0.50	m								
4	1.10		Volume of water (75%-25%)	1.23	m3	-							
4.5	1 10		Area of Drainage	17.64	m2	-							
4.5	1.10		Area of Drainage (75% 25%)	6 65	m2	-							
5	1.10		Area of Drainage (75%-25%)	0.05	1112	-							
6	1.10		lime										
7	1.10		75% Full	N/A	min								
8	1.10		25% Full	N/A	min								
9	1.10		Time 75% to 25%	N/A	min								
10	1.10		Time 75% to 25% (sec)	N/A	sec								
12	1.10	ĺĺĺ											
14	1.10		0.00										
16	1.10		0.10										
18	1.10		0.20										
20	1.10		0.40										
25	1 10		0.50										
30	1 10		0.70										
40	1 10		0.80										
40 50	1.10		1.00										
00	1.10		1.10										
60	1.10		1.20										
/5	1.10		1.40										
90	1.10		1.50										
120	1.10		1.60										
150	1.10		1.80										
180	1.10		1.90										
			2.10 2.10 0 20 40 60	80 100	0 120	140 160 180							
f =	<u>Fail</u> m/min	or	<u>Fail</u> m/s										

			SOAKAWAY TES	<u>ST</u>		a	1
Project Refere	nce:	6182					. N
Contract name		Ballyr	nakenny West			L	
Location.	•	Drogh	natering Weet				
Test No:		TP10					
Date:		24/10	/2023				
Ground Condi	lione	24/10	/2020				
Ground Condi							
	0.00						
0.00	0.30	10PC	OIL.				
0.30	0.50	Soll I	grit brown sandy slightly grave	and sitty CLA	<u>tt.</u>		vith
0.50	2.10	FIIIII	m apple and boulder content	andy singinity	y gravelly s	ILY CLAT V	VILII
		mean				1	
Elapsed Time	Fall of Water		Pit Dimensions (m)	0.00		-	
(mins)	(m)		Length (m)	3.80	m		
0	1.10		Width (m)	0.70	m		
0.5	1.10		Depth	2.10	m		
1	1.10		Water				
1.5	1.10		Start Depth of Water	1.10	m	1	
2	1.10		Depth of Water	1.00	m	1	
2.5	1.10		75% Full	1.35	m		
3	1.10		25% Full	1.85	m		
3.5	1 10		75%-25%	0.50	m		
0.0	1.10		Volume of water $(75\% - 25\%)$	1 33	m3	-	
4.5	1.11		Area of Drainage	1.55	m0	-	
4.3	1.11		Area of Drainage	10.9	m2	-	
5	1.11		Area of Drainage (75%-25%)	7.10	mz	-	
6	1.11		lime			-	
7	1.11		75% Full	N/A	min		
8	1.11		25% Full	N/A	min		
9	1.11		Time 75% to 25%	N/A	min		
10	1.11		Time 75% to 25% (sec)	N/A	sec		
12	1.11	Í					
14	1.11		0.00				
16	1.11		0.10				
18	1.11		0.20				_
20	1.11		0.30				
25	1.11		0.50				
30	1.11		0.60				
40	1.12		0.80				
50	1.12		0.90				
60	1.12		1.00				
75	1.12		1.10				
90	1 12		1.30				
120	1 12		1.40				
150	1 12		1.50				_
180	1.12		1.70				
100	1.12		1.80				
			1.90				
			2.00		1		
			0 20 40 60	80 100	0 120	140 160	180
f =	Fail	or	Fail				
	m/min		m/s				

Appendix 5 Slit Trench Logs

SITE INVESTIGATIONS LT)	Ser No: Diameter: Colour: Utili No services E No services E No services E Services E From: To: Description: 0.00m 1.10m MADE GROUND: brown sandy sligi 1.10m 2.00m MADE GROUND: grey sandy grave Point: Easting: Northing: Leve Start 709114.219 777089.739 31.4		
Client: Louth County Council Consultant: Doherty Finegan Kelly	Project: Ballymakenny West, Drogheda, Co. L	ices v: Distance: Depth: Alignment: countered. Onditions onditions		ST01
Scale: NOT TO SCALE, ALL DISTANCES IN M 6182	Duth Logged by: Excavation Started: Excavation Finished: CONTRACT M. Kaliski 24/10/2023 24/10/2023 NUMBER	Photographs	Cross Section	

Consultant: Doherty Finegan Kelly	SITE INVESTIGATIONS LTD Client: Louth County Council	Project: Ballymakenny West, Drogheda, Co	2.40m 2.50m Firm dark grey slightly sandy slightly gravelly sity CLAY with low cobble content. Trench Dimensions Point: Easting: Northing: Level: Length: Width: Depth: Start 709113.544 777071.011 31.66 5.30m 1.00m 2.50m	From: To: Description: 0.00m 1.20m MADE GROUND: brown sandy gravelly silty clay with some plastic and red brick fragments. 1.20m 2.40m MADE GROUND: grey sandy gravelly silty clay with low cobble content and some timber fragments.	Ground Conditions	Services No: Diameter: Colour: Utility: Distance: Depth: Alignment:	л [5] [5] [5] [5] [5] [5]	Plan	ST02
DEPTH ARE TO THE TOP OF SERVICES ULO2	Scale: NOT TO SCALE, ALL DISTANCES IN m	Outh Logged by: Excavation Started: Excavation Finished: CONTRACT M. Kaliski 24/10/2023 24/10/2023 NUMBER				Photographs		Cross Section	

-										
	-		P	0.00m 0.70m	From:]	m	
		End	oint:	0.70m 1.60m	To:		No:			
		709122. 709117.	Eastin	MADE red bri	Descri		Diame			
		762 777 249 777	g: No	GROUND: GROUND: ck, rag ar	ption:		ter: 0			
ALIU		056.829 054.764	rthing:	brown sa grey brov id timber 1		Grou	No Se		4.00	
		32.82 31.91	ch Dii Level	ndy slight wn sandy (fragments)		nd C	Utility rvices En	Serv		
Consul	Project		mens	ly gravelly gravelly sil		ondit	<u>/:</u> Di	ices		
tant:		4.00r	Lengt	silty day ty day wit		ions	stance			
outn (allyma	n 1.		h low cob			Dept		<pre></pre>	
y Fine	akenn	00m	dth:	ble conten			h: Alig			
gan K	y Wes	1.60m	Depth:	fragments t and som			jnment:			S
elly	t, Dro			<u>а</u> .			<u> </u>			H
	gheda									C ω
	, Co. L				3					
	outh		Contraction of the second	AS -	and	hells				
			27.							
DEPTH	Logged by M K				ALC ST	A REAL		Ph	Cro	
O SCALE ARE TO	aliski					1	A CONTRACT	otogr	S SS	
THE TOP	Excavat 24/1							aphs.	ectic	
OF SER	ion Starte 10/2023								nd	
S IN m	d: Excav 24									
	ation Finish /10/2023						A A A			
18			PARA M							
	UMBER		alat				Y			

		1															
(f)	Г		Ъ		1.90m	0.00m	From:							п	
			Ē	Start	oint:		2.60m	1.90m	То:			No:					
	ITE IN		101111	709126	Eastir		n MADE plastic	MADE	Descr			Diam					
	VESTI		11 606	583 77 050 77	Na:	.	GROUND	GROUND	iption:			eter: (
	GATIO		7007.709	7038.904	orthing:	Tren) dark bro jments): brown s		Grou	No Se	Colour:	1				
	NS LTI		1.20	32.9	Leve	ch D	own sandy	andy sligh		Ind C	ervices E	Utili	Serv			Pla	
Cons	Client	Proje		, 1		men	gravelly s	ıtly gravel		òndi	ncounte	ty: С	/ices		<u>-6.</u> 10-		
ultant:		ct:		6.1	Len	sions	silty clay w	ly silty day		tions	ed.	istance	I				
Doher	Louth	Ballyn		m	ath:		/ith low cc	y with son				: De					
ty Fin	Coun	naken		1.00m	Vidth:		bble cont	ne plastic				pth: A					
egan l	ty Cou	ny We		2.60m	Depth		ent and so	fragments				lignmen					
Kelly	Incil	est, Dr	Į		_		ome					ī.				_	
		oghed						5-1			1					~	Õ.
		a, Co.						Contra to				and the second second					+>
		Louth			N.	×4)					- With	1					
												1					
DEPT	Scale: NOT	Logged											P			Cr	
"H ARE T	TO SC	^{by:} Kalisk									AL AND		hoto			SSO	
TO THE 1	ALE, ALL	Exca											grapl			Sect	
OP OF S	DISTAN	vation Sta 24/10/202							Contraction of the second				SL			ion	
SERVICE	CES IN I	arted: E					$\langle \rangle$			A R		- ANNA					
N N	В	xcavation 1 24/10/2			a ho			A	The second						J		
C	T T	Finished: 2023				10		家人	and		States and a state of the state	THE STATE					
0	S	CONTR NUMB				X	- AL				Contraction of the second					-	
		ACT ER															

1		1					1		1					
(f))]	2.00m	1.10m	0.00m	From:		\square				
	<u>ر</u>		itart		2.20m	2.00m	1.10m	<u>To:</u>			No:		m	
	ITE IN		Eastin 709130 709125		Firm d	- MADE conter	and cc	Descri			Diame			
	VEST		1 g: N 518 7, 300 7,		lark grey	GROUNI It and so	GROUNI phorete fi	iption:			eter:			
	IGATIO		orthing 77019 445 77018 445	Tren	slightly sa	D: dark gre	D: brown s ragments		Grou	No Se	Colour:	1		
	ILT SN		Leve 32.9 32.0	ch Di	indy slight	ey brown s ete, plastic	andy sligh		Ind C	ervices E	Utili	Serv		
Cons		Proje		Imen	ly gravely	sandy gra	ntly grave		òndi	ncounte	ty: [/ices		
ultant:		et:	Len 4.6	sions	y silty CLA	velly silty scrap met	lly silty da		tions	red.	Distance			
Dohei	Louth	Ballyr	gth: V		Y with lov	clay with I al fragme	y with sor				De			
ty Fin	Coun	naken	1.00m		v cobble o	ow cobble nts <u>.</u>	ne plastic				pth:			
legan	ty Co	W Yni	Dept 2.20		ontent.	e and bou	, rag, timt				lignme		≤	
Kelly	uncil	est, D				Ider	Der				nt:			
		roghe			A ROAD	24	ALL NO			2	10			0
		da, Co						ANT I			the second			Ю
		b. Lou				S		X		and the				
		th			FF .		1/201	and the second						
	Scal	Log		AND STREET		À.	小					1		
EPTH AR		^{ged by:} M. Kali					AT LA				La Marine	Phot	Cross	
E TO TH	SCALE,	ski						SZ Ali		1	1	<u>ogra</u>	SSe	
HE TOP (ALL DIS	Excavatio 24/10									Rollins -	phs	ction	
OF SERV	TANCES	n Started)/2023		106				A A		Area -		I		
ICES	IN m	Excava 24/				X		E.	14	X				
C	ھ	tion Finish 10/2023				A STATE			ALL ALL	e as	X			
01	Š L			13	and the		1			A STATE	A CON			
	5	UMBER						155			A STATE			

		3	Point: Start	0.30m 0.80m 0.80m 1.20m	From: To: 0.00m 0.30m		No:		N						
Consultant: Doherty Finegan Kelly	E INVESTIGATIONS LTD Client: Louth County Council	Project: Ballymakenny West, Dr	Level: Level: Length: Width: Depth: 709075.829 776988.846 30.50 5.40m 1.00m 1.20m	Soft light brown slightly sandy slightly gravelly silty CLAY with low cobble content. Firm brown slightly sandy slightly gravelly silty CLAY with medium cobble and low boulder content.	Description: TOPSOIL.	Ground Conditions	Diameter: Colour: Utility: Distance: Depth: Alignment: No Services Encountered.	Services	Plan 5.40	TS					
		ogheda, Co. Louth							Cro	06					
DEPTH ARE TO TH	NOT TO SCALE,	M. Kaliski						Photogra	ss Sectio						
HE TOP OF SERVIC	ALL DISTANCES IN	Excavation Started: 24/10/2023)phs							
		Excavation Finished: 24/10/2023													
	S S	CONTRACT NUMBER		T			K.L								
	-]
--------------	---------------	----------------------	-------------------------------	---------------------------	-----------------	--	--	--	-------	------------------	------------	------	-------	------	---
ſÆ				1	1.20n	0.25n	0.00n	From						z	
()	Point: Start End		n 1.4	n 1.2	n 0.2	 			No:				
	IIIS		70 E	-	Om	0m S	5m T				D				
	N		asting: 8941.35 8937.70		irm gre	oft light	OPSOIL)escript			lamete				
	ESTI(0 776 4 776		/ brown	: grey bi	•	ion:			r: O				
	ATIC		rthing: 994.310 999.261	[ren	slightly	own slig			Grou	No S	olour:				
	NS L	•	28 28	Ch [sandy s	ghtly sar			bur	ervices	Ę	Se		P	
		7	.98 .86		lightly g	ıdy sligh			Con	Encou	llity:	Vice	0.00	an	
onsulta	lient:	roject:		ensi	ravelly s	tly grav			ditic	ntered	Dist	S			
			5.80r	suo	ilty CLA	elly silty			suc		ance:				
oher	outh	Ballyr	" h:		Y with n	CLAY w					De				
ty Fi	Cou	nake	1.00m		hedium	ith low (pth:				
nega	nty C	nny \	1. 1.	-	cobble c	cobble c					Alignn				
n Ke	ounc	Nest	pth:		ontent.	ontent.					nent:				S
 	=	Dro												S	Η
		ghed	0							E			 1	_	
		a, Co			いますか	行行		A State		1					7
		- Lou		All a				C. M. W.			ALL CAR				
		th		0	10175 A. 1.1										
				Contraction of the second		7.1	and the second s								
DEPTH	scale: NOT	_ogged b						次	Ser.		A Starting	P		Cro	
H ARE .	TO SC	y: Kalisk			1	in the second se		there's			A REAL	noto		SSC	
	ALE, A						N.S.	in the second			F	gra		Sec	
TOP (LL DIS	cavatio 24/10					A AN	and the second s			F	shc		tior	
OF SER	TANCE	n Starte /2023				and the second	and the second			A CARACTER STATE	AN I				
VICES	m NI S	d: Exc.		The		1.C		No. of Street, or Stre		A DECEMPTOR OF					
		avation F 24/10/2			A State	2	-	The state							
	L L	inished:		à	2		うな	and the second	1		1+1				
	S			and the				N.			111				
		TRACT MBER			A		A A				X				

Appendix 6 Groundwater Monitoring

Groundwater Readings

BH No:	Depth of standpipe	Depth to water - mbgl	Depth to water - mOD					
	10/11	/2023						
BH01	7.50	1.05	29.59					

Appendix 7 Geotechnical Laboratory Test Results

Classification Tests In accordance with BS 1377: Part 2

Client	Louth Council
Site	Ballymakenny West, Drogheda
S.I. File No	6182 / 23
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	7th November 2023

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Max.	Bulk	%	Comments	Remarks C=Clay; M=Silt
		No	No.	Туре	Moisture	Limit	Limit	Index	Density	Density	passing		Plasticity: L=Low;
					Content	%	%	%	Mg/m ²	Mg/m ³	425um		I=Intermediate; H=High;
					%								V=Very High; E=Extremely
													High
BH01	1.00	DC01	23/1830	В	11.1	34	19	15			59.9		CL
TP02	1.00	MK24	23/1831	В	13.3	33	18	15			63.2		CL
TP05	1.00	MK12	23/1832	В	26.7	32	18	14			55.8		CL
TP07	1.00	MK03	23/1833	В	11.5	34	19	15			58.4		CL
TP10	1.00	MK41	23/1834	В	11.1	34	18	16			55.4		CL

BS 1377 Particle Size Analysis

size, mm passing Durancer, mm % passing 100 100 0.0630 90 100 0.020 75 100 0.0006 50 100 0.020 75 100 0.0020 50 100 0.020 75 100 0.0020 75 100 0.0020 75 100 0.0020 75 100 0.0020 70 10 84.6 6.3 78.9 5.0 5.0 77.3 100 2.36 71.3 10 2.00 70 10 1.18 67.8 10 0.060 62.2 10 0.300 57.5 10 0.120 53.8 10 0.120 53.8 10 0.120 53.8 10 0.120 53.8 10 0.120 53.8 10 0.120 53.8 10 0.121 5.8	BS Sieve	Percent	Hydrometer	analysis													
100 100 0.0630 90 100 0.0200 75 100 0.0060 63 100 0.0020 50 100 0.002 20 95.2 1 14 90.7 1 10 84.6 1 6.3 71.3 1 2.00 77.3 1 2.00 70 1 1.18 67.8 1 0.425 59.9 1 0.000 52.2 1 0.150 53.6 1 0.150 53.6 1 0.150 53.6 1 0.063 48 1 Cobbles, % 0 0 Gravel, % 30 30 Sand, % 22 0.01 0.01 0.1 1 10 100 10 Sand, % 22 0 0.001 0.01 0.1 1 10 100 10 Sand, % 22 1 0.01 0.1 </td <td>size, mm</td> <td>passing</td> <td>Diameter, mm</td> <td>% passing</td> <td></td> <td>100</td> <td></td>	size, mm	passing	Diameter, mm	% passing		100											
90 100 0.0200 75 100 0.0060 63 100 0.0020 37.5 100 0.0020 20 95.2 0.00 14 90.7 0.00 10 84.6 0.63 6.3 78.9 0.00 5.0 77.3 0.00 2.36 71.3 0.00 2.30 70.5 0.00 1.18 67.8 0.000 0.425 59.9 0.000 0.312 55.8 0.150 53.6 0.150 53.6 0.001 0.01 0.1 1 10 100 Sand. % 2.2 0.001 0.01 0.1 1 100 100 Sand. % 2.2 0.001 0.01 0.1 1 100 100 Sand. % 2.2 0.001 0.01 0.1 1 100 100 Sand. % 2.2 0.001 0.01 0.1 1 100 100 Sand. %	100	100	0.0630													$H \mid \mid$	
75 100 0.0060 63 100 0.0020 50 100 100 28 96.9 100 20 95.2 14 10 84.6 100 6.3 77.3 100 2.00 70 100 1.18 67.8 100 0.425 59.9 100 0.300 57.5 100 0.425 59.9 100 0.300 57.5 100 0.425 59.9 100 0.300 57.5 100 0.425 59.9 100 0.426 59.9 100 0.3150 53.6 100 0.426 30 100 0.3212 55.8 100 0.426 30 100 0.3212 55.8 100 0.426 30 30 Sand, % 30 30 30 Sand, % 48 30 30 Engineer : Louth Country Council <td< td=""><td>90</td><td>100</td><td>0.0200</td><td></td><td></td><td>90 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	90	100	0.0200			90 —											
63 100 0.0020 50 100 28 96.9 20 95.2 14 90.7 10 84.6 6.3 78.9 5.0 77.3 2.36 71.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.212 55.8 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.212 55.8 0.150 53.6 0.425 59.9 0.425 59.9 0.426 0.42 0.427 0.42 0.430 57.5 0.601 62.2 0.421 55.8 0.003 48 0.422 59.9 0.421 59.9 0.422 59.9 0.423 59.9	75	100	0.0060														
50 100 37.5 100 28 96,9 14 90.7 16 37.8,9 5.0 77.3 2.36 71.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.150 53.6 0.633 48 0.603 48 0.603 48 0.603 48 0.150 53.6 0.615 58.8 0.622 0.01 0.63 48 0.663 48 0.663 48 0.615 53.6 0.01 0.01 0.1 1 10 100 2 Fine Medium Coarse Fine Medium Coarse 30 3and, % 22 22 21 53LT SAND GRAVEL 30 Stlt Sample No : DC01 Dc01 Dc1 Dc1	63	100	0.0020			80											
37.5 100 28 96.9 20 95.2 14 90.7 10 84.6 6.3 78.9 5.0 77.3 2.00 70 1.18 67.8 0.425 59.9 0.300 57.5 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.063 48 0.07	50	100				00									1		
28 96.9 20 95.2 14 90.7 10 84.6 6.3 78.9 5.0 77.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.212 55.8 0.55.6 77.5 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.160 Carse fine Medium Coarse fine Mediu	37.5	100				70											
20 95.2 14 90.7 10 84.6 6.3 78.9 5.0 77.3 2.36 71.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.150 53.6 0.150 53.6 0.633 48 0.063 48 0.063 48 0.01 0.1 1 10 10 10 0.01 0.1 1 10 10 100 100 100 100 100 100 2 10 10 0.01 0.1 1 10 100 2 10 10 0.01 0.1 1 10 100 2 10 10 10 10 100 100 100 2 10 10 10 10 10 100 100 2 10 10	28	96.9				70 -								1			
14 90.7 10 84.6 6.3 78.9 5.0 77.3 2.36 71.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.150 53.6 0.150 53.6 0.603 48 0.603 48 0.603 48 0.603 53.6 0.150 53.6 0.150 53.6 0.603 48 0.604 20 0.605 48 0.606 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.601 0.01 0.1 1 0.001 0.01 0.1 1 10 10 0.001 0.01 0.1 1 10 10 0.001 0.01 0.1 1 10 100 11 10 10	20	95.2			bu												
10 84.6 6.3 78.9 5.0 77.3 2.36 71.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.150 53.6 0.150 53.6 0.603 48 0.6063 48 0.603 48 0.603 48 0.604 53.6 0.150 53.6 0.603 48 Cobbles, % 0 Gravel, % 30 Sand, % 22 Clay / Silt, % 48 Engineer : Louth Countly Council Project : Ballymakenny West, Drocheda	14	90.7			ssii	60 —											
6.3 78.9 5.0 77.3 2.36 71.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.212 55.8 0.150 53.6 0.603 48 0.603 48 0.603 48 0.604 0.1 0.150 53.6 0.150 53.6 0.603 48 0.50 53.6 0.601 0.01 0.1 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.150 53.6 0.151 1 0.1 0.1 10 0.01 0.01 0.01 0.1 1 10 10 10 10 10 10 10 10 10 10 10 <	10	84.6			Ра												
5.0 77.3	6.3	78.9			age	50											
2.36 71.3 2.00 70 1.18 67.8 0.600 62.2 0.425 59.9 0.300 57.5 0.212 55.8 0.150 53.6 0.063 48 0.604 62.2 0.605 53.6 0.150 53.6 0.150 53.6 0.63 48 0.601 0.01 0.1 0.602 10 0.603 48 0.150 53.6 0.150 53.6 0.150 53.6 0.601 0.01 0.01 0.01 0.01 0.01 0.02 Engineer : Louth County Council Image: Sample No : Project : Ballymakenny West, Drogheda	5.0	77.3			ent												
2.00 70	2.36	71.3			erc	40											
1.18 67.8	2.00	70			<u> </u>												
0.600 62.2	1.18	67.8				20											
0.425 59.9	0.600	62.2				30											
0.30057.50.21255.80.15053.60.06348 A Cobbles, %0Gravel, %30Sand, %22Clay / Silt, %48Engineer :Louth County CouncilEngineer :Louth County CouncilProject :Ballymakenny West, Drogheda	0.425	59.9															
0.212 55.8	0.300	57.5				20 —											
0.15053.6100.06348Cobbles, $\%$ 0Gravel, $\%$ 30Sand, $\%$ 22Clay / Silt, $\%$ 48Engineer :Louth County CouncilProject :Ballymakenny West, Drogheda	0.212	55.8															
0.06348Cobbles, $\%$ 0Gravel, $\%$ 30Sand, $\%$ 22Clay / Silt, $\%$ 48Engineer :Louth County CouncilProject :Ballymakenny West, Drogheda	0.150	53.6				10											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.063	48															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0 -											
Gravel, % 30 Sand, % 22 Clay / Silt, % 48 Engineer : Louth County Council Project : Ballymakenny West, Drogheda	Cobbles, %	0				0.001			0.01		0.1		1		10		100
Sand, % 22 Fine Medium Coarse Fine Medium Coarse	Gravel, %	30															_
Clay / Silt, % 48 Engineer : Louth County Council Project : Ballymakenny West, Drogheda Sample No : DC01 Depth, m : 1.00	Sand, %	22				A	Fine	М	edium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	ble
Engineer : Louth County Council Lab. No : 23/1830 Hole ID : BH 01 Project : Ballymakenny West, Drogheda Sample No : DC01 Depth. m : 1.00	Clay / Silt, %	48				C			SILT			SAND			GRAVEL		Cob
Engineer :Louth County CouncilLab. No :23/1830Hole ID :BH 01Project :Ballymakenny West, DroghedaSample No :DC01Depth. m :1.00						•											
Engineer :Louth County CouncilLab. No :23/1830Hole ID :BH 01Project :Ballymakenny West, DroghedaSample No :DC01Depth. m :1.00																1	
Project : Ballymakenny West, Drogheda Sample No : DC01 Depth. m : 1.00	Engineer :	ouncil						Lab. N	lo: 23/	1830	Hole ID : BH 01						
	Project : Ballymakenny West, Dro				, Drogheda Sample No : DC01						C01	Depth, m : 1.00					

Material description :	slightly sandy slightly gravelly silty CLAY
Domarka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																		
size, mm	passing	Diameter, mm	% passing		100 -																
100	100	0.0630	48										- 1								
90	100	0.0200	40		90 -			┼╏┼┼┼					-+					+			
75	100	0.0060	34										- 1								
63	100	0.0020	29		80 -													4			
50	100												- 1								
37.5	100												- 1								
28	97.1				70 -											1					
20	94.2			b									- 1		1						
14	91.9			ssin	60 -			┼╏┼┼┼					-	\times				+			
10	88.2			Pa									1								
6.3	83			age	50 -			+										\rightarrow			
5.0	81			ente									- 1								
2.36	75.5			erce	40								- 1								
2.00	74.2			٦ ٩	40 -				\sim	1											
1.18	71.2												- 1								
0.600	66.7				30 -			┼╂┼┼┼										+			
0.425	63.2					-							- 1								
0.300	59.5				20 -								_								
0.212	56.8												- 1								
0.150	54.5				10																
0.063	48				10																
													- 1								
Cobbles, %	0				0 -	0.1			1							4			10		100
Gravel, %	26				0.0			0.0)			0.1				I			10		100
Sand, %	26						Fine	Me	dium	Coar	se	Fine	1	Medium	Т	Coarse	Fine		Medium	Coarse	ele
Silt, %	19					CLA			SILT	1				SAND)				GRAVEI		Cobb
Clay, %	29					L															لتتسل
Engineer :		Lout	h County Co	unci	1] [Lab.	No:	2	3/18	31			Hole ID	: <u>T</u>	P 02
Project :	Engineer :Lab. No :25/1651Hole ID :IP 02Project :Ballymakenny West, DroghedaSample No :MK24Depth, m :1.00																				
	Delly matering (rest, Dregneda Delli, III. 100																				
Material	description :	slightly sandy sl	ightly gravel	ly sil	ty CL	AY															
		Soils with clay or	silt content be	twee	n 15%	- 35%	can be c	lassified	as cl	ay or si	ilt der	ending	on th	e field I	Engin	eers asse	essment	of ir	n-situ behav	iour.	

Remarks ·	sons with early of she content between 15% - 55% can be classified as early of she depending on the field Engineers assessment of in
Kennarks .	Where material is for reause and therefore disturbed only soils with clay or silt \$35% are classified as clay or silt
	where material is for re-use and therefore disturbed, only sons with eray of sht > 55% are classified as eray of sht

BS 1377 Particle Size Analysis

BS Sieve	Percent	Hydrometer	analysis																	
size, mm	passing	Diameter, mm	% passing	10	00														Π	
100	100	0.0630													\mathcal{H}					
90	100	0.0200		9	90														<u> </u>	
75	100	0.0060																		
63	100	0.0020		g	20															
50	100																			
37.5	100																			
28	100			/	0														Ħ	
20	100			b																
14	100			e ssir	50 +			++++					/		┽╉┼┼┼				+++	
10	98.1			Ра																
6.3	95.9			age 5	50							V +		_	+ + + + + + + + + + + + + + + + + + + +				+++	
5.0	94.8			enta								1								
2.36	83.1				LO															
2.00	81.9			<u>с</u> .							111									
1.18	73.5																			
0.600	61.6			3	30														\square	
0.425	55.8																			
0.300	52.4			2	20 +														+++	
0.212	48.7																			
0.150	45.4			1	0										+				++-	
0.063	37																			
					0														Щ	
Cobbles, %	0				0.001			0.01			0.1		1		1	0			100	
Gravel, %	18																		_	
Sand, %	45					Fine	М	edium	Coarse	Fin	ie 1	Medium	Coarse	Fine	Med	ium	Coarse	e	ble	
Clay / Silt, %	37				C			SILT				SAND			GI	RAVEL			Cob	
					•					-				-						
Engineer :		Lout	h County Cou	uncil			La	b. No :	23/	1832		Но	le ID :	e ID : TP 05		5				
Project :		Ballymak	kenny West, I	Drogheda						Samp	le No :	М	K12		Dept	th, m :		1.00		

Material description :	sandy slightly gravelly silty CLAY
Domarka	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																					
size, mm	passing	Diameter, mm	% passing	1	00 T																			1
100	100	0.0630	46																					
90	100	0.0200	38		90 +															\rightarrow		\vdash	+++++	-
75	100	0.0060	33																					
63	100	0.0020	28		80 +																			
50	100				00															Л				
37.5	100																							
28	89.6			1	70 +																			1
20	88.3			D D																				
14	85.5			ssir	60 +												4			\rightarrow			+++++	-
10	81.8			Pa											\vdash									
6.3	79.3			age	50 -																	\vdash	++++++	_
5.0	76.9			enta																				
2.36	69.9			erc	10							\square												
2.00	68.8			□	40						\vdash													
1.18	66]					++															
0.600	61.1				30 +																		+++++	-
0.425	58.4					/																		
0.300	56.5				20 -								++-		┢		_					\vdash	++++++	-
0.212	54.8																							
0.150	52.5				10																			
0.063	46]																				
Cobbles, %	0				0 +	01			0	01				0.1	•			<u></u>			10		1	
Gravel, %	31				0.0				0.					5.1										
Sand, %	23					2	Fine	e	М	edium	Coa	arse		Fine	M	edium		Coarse	Fine	,	Medium	Coars	e 💡	Die
Silt, %	18					CL				SILT			Ť			SANI)				GRAVE	Ĺ	I I I	ĉ
Clay, %	28																					·		-
<u> </u>																								
Engineer :	igineer : Louth County Council Lab. No : 23/1833 Hole ID : TP 07																							
Project :	Project : Ballymakenny West, Drogheda Sample No : MK03 Depth, m : 1.00																							
Material	description :	slightly sandy sl	ightly gravel	ly silty	CL	AY																		

Material description :	singinity sandy singinity graveny sing CLA i
Demorks .	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Keillarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

Printed 10/11/2023

BS Sieve	Percent	Hydrometer	analysis												
size, mm	passing	Diameter, mm	% passing	100	,										
100	100	0.0630	43												
90	100	0.0200	37	90)									/	++++
75	100	0.0060	31											$V \mid \cdot \mid \cdot \mid$	
63	100	0.0020	27	80	, 										
50	100														
37.5	100												H		
28	94.5			/(,										
20	83.7			b											
14	79.7			00 Ssi r)										++++
10	76.2			Ъа											
6.3	72.8			96 50) 										
5.0	71.4			ent											
2.36	67.1														
2.00	65.7			L 40											
1.18	62.7														
0.600	58.4			30)		1								++++
0.425	55.4					f									
0.300	52.8			20)										
0.212	50.5														
0.150	48.2			10	, <u> </u>										
0.063	43														
Cobbles, %	0				0.001		0.01		0.1		1		10	₽	100
Gravel, %	34						0.01		0.1		'		10		
Sand, %	23				AY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	ble
Silt, %	16				CL		SILT	1		SAND			GRAVE	L	Cob
Clay, %	27				•	-			-			-			··
Engineer		Τ4	h County Co				— r		Lob M		1024		Hala ID) 10
Engineer :		Lout	II County Co	Droghad	10				Lad. No	23/ 23/	741		Dopth m	· IP	00
Project :		Банута	kenny west,	Drogneo	ia				Sample No). MI	<u>\</u> 41		Depin, m	·	00
Matarial	decomintion	ali abtly condy al	abtly graval	ly oilty (

Chemical Testing In accordance with BS 1377: Part 3

Client	Louth Council
Site	Ballymakenny West, Drogheda
S.I. File No	6182 / 23
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	7th November 2023

Hole Id	Depth	Sample	Lab Ref	pН	Water Soluble	Water Soluble	Acid Soluble	Acid Soluble	Chloride	% passing
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Sulphate Content	Sulphate Content	ion	2mm
					(2:1 Water-soil	ater-soil (2:1 Water-soil (2		(2:1 Water-soil	Content	
					extract) (SO ₃)	extract) (SO ₃)	extract) (SO ₃)	extract) (SO ₃)	(water:soil	
					g/L	%	g/L	%	ratio 2:1)	
									%	
BH01	1.00	DC01	23/1830	7.81	0.126	0.088				70.0
TP02	1.00	MK24	23/1831	7.96	0.126	0.093				74.2
TP05	1.00	MK12	23/1832	7.63	0.124	0.102				81.9
TP07	1.00	MK03	23/1833	7.77	0.127	0.088				68.8
TP10	1.00	MK41	23/1834	8.07	0.126	0.083				65.7

Appendix 8 Environmental Laboratory Test Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528777 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 09 November 2023 Site Investigations Ltd 231027-116 6182 Ballymakenny West, Drogheda 710414 75/A/23

We received 4 samples on Friday October 27, 2023 and 4 of these samples were scheduled for analysis which was completed on Thursday November 09, 2023. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

<u>Sonia McWhan</u> Operations Manager

ALS Laboratories (UK) Limited. Registered Office: Torrington Avenue, Coventry CV4 9GU. Registered in England and Wales No. 02391955. Version: 3.6 Version Issued: 09/11/2023

CERTIFICATE OF ANALYSIS

 Report Number:
 710414
 Superseded Report:

 Location:
 Ballymakenny West, Drogheda

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
28855184	ST3		0.50 - 0.50	
28855181	TP1		0.50 - 0.50	
28855182	TP7		0.50 - 0.50	
28855183	TP10		0.50 - 0.50	

Only received samples which have had analysis scheduled will be shown on the following pages.

vanualeu

CERTIFICATE OF ANALYSIS

SDG: 231027-116 Client Ref.: 6182

Report Number: 710414 Superseded Report: Location: Ballymakenny West, Drogheda

	0102		Location. Danymakeniny west, Drogheda							ia				
Results Legend	Lah Samnle	No(s)			288			288			288			
X Test	Lab Sample	NO(3)			55184			55181			55182			55183
Possible														
	Customer Sample Reference				ST	4			; 7			-		
Sample Types -	Sample Reference				ω			_	7			Ċ		
S - Soil/Solid UNS - Unspecified Solid														
GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Reference													
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage	Depth (m) Container				0.50 - 0.50	0.50 - 0.50			0.50 - 0.50			0.50 - 0.50		
US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge C - C - Sa				250g Amber (ALE210)) 60g VOC (ALE215)	1 kg TUB wi Handle (ALE2	250g Amber (ALE210)) 60g VOC (ALE215)	1 kg TUB wi Handle (ALE2	250g Amber (ALE210)) 60g VOC (ALE215)	1 kg TUB wi Handle (ALE2	250g Amber (ALE210)) 60g VOC (ALE215)
OTH - Other			th 260)	Jar	-	th 260)	Jar		th 260)	Jar	_	th 260)	Jar	
Anions by Kone (w)	Sample T		S	S	S	S	S	S	S	S	S	S	S	S
ranono by none (w)	, u	Tests: 4	X			X			X			X		
CEN Readings	All	NDPs: 0 Tests: 4	x			X			X			X		
Chromium III	All	NDPs: 0 Tests: 4		X			X			X			X	
Coronene	All	NDPs: 0 Tests: 4		X			X			X			X	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 4	X			X			X			X		
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 4	x			X			X			X		
EPH by GCxGC-FID	All	NDPs: 0 Tests: 4		X			X			X			X	
EPH CWG GC (S)	All	NDPs: 0 Tests: 4		X			X			X			X	
Fluoride	All	NDPs: 0 Tests: 4	x			X			X			X		
GRO by GC-FID (S)	All	NDPs: 0 Tests: 4			X			X			X			x
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 4		x			X			X			x	
Loss on Ignition in soils	All	NDPs: 0 Tests: 4		x			X			X			X	
Mercury Dissolved	All	NDPs: 0 Tests: 4	x			X			X			X		
Metals in solid samples by OES	All	NDPs: 0 Tests: 4		X			X			X			X	
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 4		X			X			x			X	

Validated

TP10

TP7

TP1

			CEF	RTIFICATE	E OF AN/	ALYSIS			
(A	ALS)	SDG:	231027-116	Report Nun	nber: 71041	4	Superseded Report:		
		lient ket.:	6182	LOCa	ition: Ballyn	iakenny west.	Drogneda		
Results Legend X Test		mination	Lab Sample No(s)	28855184	28855181	28855182	28855183		
F	Possible		Customer						
			Customer	(0	_		-	1	

Sample Reference

ST3

Sample Types -														
S - Soll/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	AGS Reference												
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (n			0.50 - 0.50	0.50 - 0.50			0.50 - 0.50			0.30 - 0.30			
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container			250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	(ALE215)
	Sample Type			S	s	s	S	s	S	s S	S	s	S	v
PAH by GCMS	All	NDPs: 0 Tests: 4		X			X			X			x	
PCBs by GCMS	All	NDPs: 0 Tests: 4		X			X			X			X	
рН	All	NDPs: 0 Tests: 4		X			X			X			X	
pH Value of Filtered Water	All	NDPs: 0 Tests: 4	x			X			X			X		
Phenols by HPLC (W)	All	NDPs: 0 Tests: 4	x			x			X			x		
Sample description	All	NDPs: 0 Tests: 4		X			X			x			X	
Total Dissolved Solids on Leachates	All	NDPs: 0 Tests: 4	X			x			X			X		
Total Organic Carbon	All	NDPs: 0 Tests: 4		X			X			X			X	
TPH CWG GC (S)	All	NDPs: 0 Tests: 4		X			X			X			X	
VOC MS (S)	All	NDPs: 0 Tests: 4			x			x			X			x

CERTIFICATE OF ANALYSIS

Report Number: 710414 Superse Location: Ballymakenny West, Drogheda

Superseded Report:

Validated

Sample Descriptions

Grain Sizes								
very fine	0.063mm	fine 0.00	53mm - 0.1mm me	edium 0.1mm	n - 2mm coa	rse 2mm - 1	l0mm very coa	arse >10mm
Lab Sample No	(s) Custor	ner Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
28855184		ST3	0.50 - 0.50	Dark Brown	Clay Loam	Stones	None	
28855181	855181 TP1		0.50 - 0.50	Dark Brown	Clay	Stones	None	
28855182	2 TP7		0.50 - 0.50	Dark Brown	Clay	Stones	Vegetation	
28855183		TP10	0.50 - 0.50	Dark Brown	Sandy Clay Loam	Stones	Vegetation	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

 Report Number:
 710414
 Superset

 Location:
 Ballymakenny West, Drogheda

Validated

Superseded Report:

Results Legend # ISO17025 accredited.	Cus	tomer Sample Ref.	ST3	TP1	TP7	TP10	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	
tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor repo	ort for	Sample Type Date Sampled	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	
** % recovery of the surrogate standard to che efficiency of the method. The results of indi	eck the vidual	Sample Time	27/10/2023	27/10/2023	27/10/2023	27/10/2023	
compounds within samples aren't corrected recovery	I for the	SDG Ref	231027-116	231027-116	231027-116	231027-116	
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	I	Lab Sample No.(s) AGS Reference	28855184	28855181	28855182	28855183	
Component Moisture Content Ratio (% of as	LOD/Units	B Method	10	17	15	10	
received sample)	70	T WICZ4	15 §	۱, §	13 §	ş.	
Loss on ignition	<0.7 %	TM018	7.01	3.7	3.89	2.26	
Organic Carbon, Total	<0.2 %	TM132	<u>§ M</u> 2.66	§ M 0 294	§ M 0.528	0 269	
°	//		§ M	§ M	§ M	§ M	
pH	1 pH Units	5 TM133	8.09 & M	7.67 & M	8.31 & M	8.69 & M	
Chromium, Hexavalent	<0.6 mg/kg	g TM151	<0.6	<0.6	<0.6	<0.6	
DOD 00	0 "		§ M	§ M	§ M	§ M	
PCB congener 28	<3 µg/kg	I M168	<3 & M	<3 & M	<3 & M	<3 & M	
PCB congener 52	<3 µg/kg	TM168	<3	<3	<3	<3	
PCB congener 101	<3 µa/ka	TM168	§ M	§ M	§ M	§ M	
	~5 µg/kg	TIVITOO	_3 §M	S § M	S § M	S § M	
PCB congener 118	<3 µg/kg	TM168	<3	<3	<3	<3	
PCB congener 138	<3 µa/ka	TM168	<u>§</u> ™ <3	<u>§</u> ™ <3	<u>§</u> ™ <3	<3	
_	1.0.0		§ M	§ M	§ M	§ M	
PCB congener 153	<3 µg/kg	TM168	<3 & M	<3 8 M	<3 8 M	<3 8 M	
PCB congener 180	<3 µg/kg	TM168	<3	<3	<3	<3	
Sum of datacted PCB 7 Congeners	<21 ug/kg	TM169	§ M	§ M	§ M	§ M	
Sum of detected 1 OD 7 Congenera	~21 µy/ky	TIVITOO	S S	≦21 §	≦21 §	≦21 §	
Chromium, Trivalent	<0.9 mg/kg	g TM181	24.9	33.5	30.1	23.1	
Antimony	<0.6 ma/ka	a TM181	<0.6	<0.6	<0.6	<0.6	
		,	§#	§#	§#	§#	
Arsenic	<0.6 mg/kg	g TM181	15.1 8 M	8.3 & M	10.4 8 M	10.6 8 M	
Barium	<0.6 mg/kg	g TM181	128	144	174	106	
Cadmium	<0.00 mm///	T TM404	§#	§#	§#	§#	
Caumium	<0.02 mg/k	g 11/11/81	0.435 § M	<0.02 § M	<0.02 § M	0.0256 § M	
Chromium	<0.9 mg/kg	g TM181	24.9	33.5	30.1	23.1	
Copper	<1.4 ma/ka	TM181	§ M 34.4	§ M 13 7	§ M	§ M	
coppo.	s n.+ mg/kg		۶.+ § M	13.7 § M	22 § M	20.0 § M	
Lead	<0.7 mg/kg	g TM181	68.1 S M	16.6 S M	25.9 S M	13.6 S M	
Mercury	<0.1 mg/kg	a TM181	<0.1	<0.1	<0.1	<0.1	
		-	§ M	§ M	§ M	§ M	
woydaenum	<0.1 mg/kg	g IM181	1.52 & #	<0.1 & #	0.163 & #	0.315 & #	
Nickel	<0.2 mg/kg	g TM181	37.3	41.5	43.8	38.5	
Selenium	<1 ma/ka	TM181	<u>§ M</u>	§ M <1	§ M 1 46	§ M 1 37	
	- Thightg	TWITCH	§#	§#	§#	\$#	
Zinc	<1.9 mg/kg	g TM181	90.2	63.4 © M	64.3 © M	62.2 © M	
PAH Total 17 (inc Coronene) Moisture	<10 mg/kg	TM410	<10	<10	<10	<10	
Corrected	1000	T14440	§	§	§	§	
Coronene	<∠∪∪ µg/kį	y 1M410	<200	<200 8	<200 8	<200 8	
Mineral Oil >C10-C40	<5 mg/kg	TM415	6.46	<5	<5	<5	
			§	§	<u></u>	<u> </u> §	

CERTIFICATE OF ANALYSIS

 Report Number:
 710414
 Superset

 Location:
 Ballymakenny West, Drogheda

Validated

Superseded Report:

AH by GCMS

PAH by GCIVIS	0	Or In Def					
Kesuits Legend ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.	Cust	omer Sample Ref. Depth (m)	ST3 0.50 - 0.50	TP1 0.50 - 0.50	TP7 0.50 - 0.50	TP10 0.50 - 0.50	
tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor rep accreditation status. * % recovery of the surrogate standard to ch	ort for neck the	Sample Type Date Sampled Sample Time	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S) -	Soil/Solid (S)	
efficiency of the method. The results of ind compounds within samples aren't correcte	lividual d for the	Date Received SDG Ref	27/10/2023 231027-116	27/10/2023 231027-116	27/10/2023 231027-116	27/10/2023 231027-116	
recovery (F) Trigger breach confirmed	L	ab Sample No.(s)	28855184	28855181	28855182	28855183	
1-4+§@Sample deviation (see appendix)	LOD/Units	AGS Reference					
Naphthalene	<9 µg/kg	TM218	<9 § M	<9 § M	<9 § M	<9 § M	
Acenaphthylene	<12 µg/kg	TM218	<12 § M	<12 § M	<12 § M	<12 § M	
Acenaphthene	<8 µg/kg	TM218	<8 § M	<8 § M	<8 § M	<8 § M	
Fluorene	<10 µg/kg	TM218	<10 § M	<10 § M	<10 § M	<10 § M	
Phenanthrene	<15 µg/kg	TM218	37.9 § M	<15 § M	<15 § M	<15 § M	
Anthracene	<16 µg/kg	TM218	<16 § M	<16 § M	<16 § M	<16 § M	
Fluoranthene	<17 µg/kg	TM218	72.6 § M	<17 § M	<17 § M	<17 § M	
Pyrene	<15 µg/kg	TM218	65.3 § M	<15 § M	<15 § M	<15 § M	
Benz(a)anthracene	<14 µg/kg	TM218	47.5 § M	<14 § M	<14 § M	<14 § M	
Chrysene	<10 µg/kg	TM218	48.1 § M	<10 § M	<10 § M	<10 § M	
Benzo(b)fluoranthene	<15 µg/kg	TM218	55.8 § M	<15 § M	<15 § M	<15 § M	
Benzo(k)fluoranthene	<14 µg/kg	TM218	21 § M	<14 § M	<14 § M	<14 § M	
Benzo(a)pyrene	<15 µg/kg	TM218	42.6 § M	<15 § M	<15 § M	<15 § M	
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	29.2 § M	<18 § M	<18 § M	<18 § M	
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23 § M	<23 § M	<23 § M	<23 § M	
Benzo(g,h,i)perylene	<24 µg/kg	TM218	31.8 § M	<24 § M	<24 § M	<24 § M	
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	452 §	<118 §	<118 §	<118 §	

CERTIFICATE OF ANALYSIS

Report Number: 710414 Location: Ballymakenny West, Drogheda Validated

Superseded Report:

TPF

TPH CWG (S)								
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss (iff Discolver // filterard sample.	C	ustomer Sample Ref.	ST3	TP1	TP7	TP10		
diss.nit Dissolved / nitered sample. tot.unfillTotal / unfiltered sample. * Subcontracted - refer to subcontractor repr accreditation status.	ort for	Sample Type Date Sampled Sample Time	0.50 - 0.50 Soil/Solid (S) -					
efficiency of the method. The results of ind compounds within samples aren't corrected	ividual d for the	Date Received	27/10/2023 231027-116	27/10/2023 231027-116	27/10/2023 231027-116	27/10/2023 231027-116		
recovery (F) Trigger breach confirmed 1-4ቀ§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	28855184	28855181	28855182	28855183		
	LOD/Uni	ts Method	00.7	00.4	445	100	ļ	
Give Surroyale // recovery	70	110009	00.7 §	90.4 §	l 115 §	100 §		
Aliphatics >C5-C6 (HS_1D_AL)	<10 µg/l	kg TM089	<10 §	<10 §	<10 §	<10 §		
Aliphatics >C6-C8 (HS_1D_AL)	<10 µg/l	kg TM089	<10 §	<10 §	<10 §	<10 §		
Aliphatics >C8-C10 (HS_1D_AL)	<10 µg/l	kg TM089	<10	<10 §	<10 §	<10		
Aliphatics >C10-C12 (EH_2D_AL_#1)	<1000 µg	ı/kg TM414	<1000 §#	<1000 §#	<1000 §#	<1000 §#		
Aliphatics >C12-C16 (EH_2D_AL_#1)	<1000 µg	ı/kg TM414	<1000 § #	<1000 §#	<1000 §#	<1000 § #		
Aliphatics >C16-C21 (EH_2D_AL_#1)	<1000 µg	/kg TM414	<1000 § #	<1000 §#	<1000 §#	<1000 § #		
Aliphatics >C21-C35 (EH_2D_AL_#1)	<1000 µg	/kg TM414	1900 §#	<1000 §#	<1000 §#	<1000 §#		
Aliphatics >C35-C44 (EH_2D_AL_#1)	<1000 µg	/kg TM414	<1000 §	<1000 §	<1000 §	<1000 §		
Total Aliphatics >C10-C44 (EH_2D_AR_#1)	<5000 µg	ı/kg TM414	<5000 §	<5000 §	<5000 §	<5000 §		
Total Aliphatics & Aromatics >C10-C44 (EH_2D_Total_#1)	<10000 ua/ka) TM414	<10000 8	<10000 8	<10000 8	<10000 8		
Aromatics >EC5-EC7 (HS_1D_AR)	<10 µg/l	kg TM089	<10	<10	<10	<10		
Aromatics >EC7-EC8 (HS_1D_AR)	<10 µg/l	kg TM089	<10	<10 <10	<10 <10	<10 <10		
Aromatics >EC8-EC10 (HS_1D_AR)	<10 µg/l	kg TM089	<10	<10	<10	<10		
Aromatics > EC10-EC12 (EH_2D_AR_#1)	<1000 µg	ı/kg TM414	<1000	<1000	<1000	<1000		
Aromatics > EC12-EC16 (EH_2D_AR_#1)	<1000 µg	ı/kg TM414	<1000	<1000	<1000	<1000		
Aromatics > EC16-EC21 (EH_2D_AR_#1)	<1000 µg	ı/kg TM414	1220 8 #	<1000 8 #	<1000 8 #	<1000 8 #		
Aromatics > EC21-EC35 (EH_2D_AR_#1)	<1000 µg	I/kg TM414	3330 8 #	1040 8 #	<1000 8 #	<1000 8 #		
Aromatics >EC35-EC44 (EH_2D_AR_#1)	<1000 µg	/kg TM414	<1000 §	<1000 §	<1000 §	<1000 8		
Aromatics > EC40-EC44 (EH_2D_AR_#1)	<1000 µg	ı/kg TM414	<1000 §	<1000 §	<1000 §	<1000 §		
Total Aromatics > EC10-EC44 (EH_2D_AR_#1)	<5000 µg	/kg TM414	5550 §	<5000 §	<5000 §	<5000 §		
Total Aliphatics & Aromatics >C5-C44 (EH_2D_Total_#1+HS_1D_Total)	<10000 µg/kg) TM414	<10000 §	<10000 §	<10000 §	<10000 §		
GRO >C5-C6 (HS_1D)	<20 µg/l	kg TM089	<20 §	<20 §	<20 §	<20 §		
GRO >C6-C7 (HS_1D)	<20 µg/l	kg TM089	<20 §	<20 §	<20 §	<20 §		
GRO >C7-C8 (HS_1D)	<20 µg/l	kg TM089	<20 §	<20 §	<20 §	<20 §		
GRO >C8-C10 (HS_1D)	<20 µg/l	kg TM089	<20 §	<20 §	<20 §	<20 §		
GRO >C10-C12 (HS_1D)	<20 µg/l	kg TM089	<20 §	<20 §	<20 §	<20 §		
Total Aliphatics >C5-C10 (HS_1D_AL_TOTAL)	<50 µg/l	kg TM089	<50 §	<50 §	<50 §	<50 §		
Total Aromatics >EC5-EC10 (HS_1D_AR_TOTAL)	<50 µg/l	kg TM089	<50 §	<50 §	<50 §	<50 §		
GRO >C5-C10 (HS_1D_TOTAL)	<20 µg/l	kg TM089	<20 §	<20 §	<20 §	<20 §		
						3		

CERTIFICATE OF ANALYSIS

 Report Number:
 710414
 Superset

 Location:
 Ballymakenny West, Drogheda

Validated

Superseded Report:

VOC MS (S) Results Legend	Cu	ustomer Sample Ref.	ST3	TP1	TP7	TP10	
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontracto accreditation status.	r report for	Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S) -				
 % recovery of the surrogate standard efficiency of the method. The results of compounds within samples aren't con recovery (F) Trigger breach confirmed 	to check the of individual rected for the	Date Received SDG Ref Lab Sample No.(s)	27/10/2023 231027-116 28855184	27/10/2023 231027-116 28855181	27/10/2023 231027-116 28855182	27/10/2023 231027-116 28855183	
1-4+§@ Sample deviation (see appendix)	LOD/Unit	AGS Reference					
Dibromofluoromethane**	%	TM116	109 §	104 §	109 §	115 §	
oluene-d8**	%	TM116	93.7 §	95.9 §	98.3 §	98.4 §	
-Bromofluorobenzene**	%	TM116	74.6 §	96.8 §	98.1 §	97.4 §	
lethyl Tertiary Butyl Ether	<0.5 µg/ł	kg TM116	<0.5 § M	<0.5 § M	<0.5 § M	<0.5 § M	
enzene	<1 µg/k	g TM116	<1 § M	<1 § M	<1 § M	<1 § M	
oluene	<1 µg/k	g TM116	4.75 § M	<1 § M	<1 § M	1.29 § M	
thylbenzene	<1 µg/k	g TM116	<1 § M	<1 § M	<1 § M	<1 § M	
/m-Xylene	<2 µg/k	g TM116	<2 §#	<2 §#	<2 §#	<2 §#	
-Xylene	<2 µg/k	g TM116	<2 § M	<2 § M	<2 § M	<2 § M	

(ALS)	SDG:	2310
	Client Ref.:	6182

231027-116

CERTIFICATE OF ANALYSIS

Validated

Report Number:	710414	Superseded Report:
Location:	Ballymakenny West,	Drogheda

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESU	JLTS				F	REF : BS E	N 12457/2
Client Reference			Site Location		Ballvn	nakennv Wes	t. Drogheda
Mass Sample taken (kg)	0 111		Natural Moist	ire Content (%	(1) 22.8	·····, ····	., g
Mass of dry comple (kg)	0.000		Day Matter Co	()	01 5		
Mass of dry sample (kg)	0.090		Dry Matter Co	ment (%)	01.5		
Particle Size <4mm	>95%						
Case					Landfil	Waste Acce	ptance
SDG	231027-116				C	criteria Limit	S
Lab Sample Number(s)	28855181						
Sampled Date						Stable	
Customer Sample Ref	TP1				Inert Waste	Non-reactive	Hazardous
Donth (m)	0.50 - 0.50				Landfill	in Non-	Waste Landfill
	0.30 - 0.30					Hazardous Landfill	
Solid Waste Analysis	Result						
Total Organic Carbon (%)	0.294				3	5	6
Loss on Ignition (%)	3.7				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Mineral Oil (mg/kg) (EH 2D AL)	<0.021				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	7.67				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
					-		
Eluate Analysis	C ₂ Conc ⁿ in 10):1 eluate (mg/l)	A ₂ 10:1 conc ⁿ	leached (mg/kg)	Limit values using BS	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg	
	Result	Limit of Detection	Result	Limit of Detection	0.5	2	0.5
Arsenic	<0.0005	<0.0005	<0.005	< 0.005	0.5	2	25
Barium	0.00148	<0.0002	0.0148	<0.002	20	100	300
Chromium	<0.00008	<0.0008	<0.0008	<0.0008	0.04	10	5
Cappor	<0.001	< 0.001	<0.01	< 0.01	0.5	50	100
Mercury Dissolved (C)/AE)	<0.000055	<0.0003	<0.00055	<0.003	0.01	0.2	2
Molybdenum	<0.00001	<0.0001	<0.0001	<0.0001	0.5	10	30
Nickel	<0.000	<0.000	<0.00	<0.00	0.0	10	40
Lead	0.000261	<0.0002	0.00261	< 0.002	0.5	10	50
Antimony	< 0.001	< 0.001	<0.01	< 0.01	0.06	0.7	5
Selenium	< 0.001	< 0.001	< 0.01	< 0.01	0.1	0.5	7
Zinc	< 0.001	< 0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	2.7	<2	27	<20	1000	20000	50000
Total Dissolved Solids	21.2	<10	212	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	4.86	<3	48.6	<30	500	800	1000

Leach Test Information

Date Prepared	28-Oct-2023
pH (pH Units)	7.39
Conductivity (µS/cm)	29
Volume Leachant (Litres)	0.879

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

ALS	SDG:	23
	Client Ref.:	618

Validated

100

Г

			CERTIFICA	TE OF ANA	LYSIS		V d	illualeu
SDG: 231027-116 Client Ref.: 6182 Report Number: 710414 Location: Ballymakenny West, D					4	uperseded Rep gheda	ort:	
		CEN 10	1 SINGLE	STAGE LEA	CHATE TES	БТ		
WAC ANAL	YTICAL RES	SULTS					REF : BS E	N 12457/2
Client Refere	nce		:	Site Location		Bally	makenny Wes	t, Drogheda
Mass Sample	taken (kg)	0.110		Natural Moist	ure Content (%	() 21.7	,	
Mass of dry s	ample (kg)	0.090		Dry Matter Co	ntent (%)	82.2		
Particle Size	<4mm	>95%			(,0)			
Case						Landfi	II Waste Acce	eptance
SDG		231027-116				(Criteria Limit	s
Lab Sample N	lumber(s)	28855182						
Sampled Date	9						Stable	
Customer Sample Ref.		ple Ref. TP7				Inert Waste	Hazardous Waste	Hazardous
Depth (m)		0.50 - 0.50				Landfill	in Non- Hazardous	Waste Landfill
Solid Waste A	nalysis	Result					Landfill	
Total Organic Carbo	n (%)	0.528				3	5	6
Loss on Ignition (%)		3.89				-	-	10
Sum of BTEX (mg/kg	g)	-				-	-	-
Sum of 7 PCBs (mg/ Minoral Oil (mg/kg) (kg)	<0.021				1	-	-
PAH Sum of 17 (mg/	EH_2D_AL)	<10				100	-	-
pH (pH Units)	19/	8.31				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-	-			-	-	-
Eluate Analys	sis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A ₂ 10:1 conc ⁿ	leached (mg/kg)	Limit values using BS	for compliance l EN 12457-3 at L	eaching test /S 10 l/kg
• •		Result	Limit of Detection	Result	Limit of Detection	0.5		05
Arsenic		0.000515	< 0.0005	0.00515	<0.005	0.5	2	25
Barium		0.0271	<0.0002	0.271	<0.002	20	100	300
Cadmium		<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium		0.00121	< 0.001	0.0121	<0.01	0.5	10	70

Copper	0.00198	<0.0003	0.0198	<0.003	2	50	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	
Nickel	0.00116	<0.0004	0.0116	<0.004	0.4	10	
Lead	0.000348	<0.0002	0.00348	<0.002	0.5	10	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	
Zinc	0.00519	<0.001	0.0519	<0.01	4	50	
Chloride	2.6	<2	26	<20	800	15000	
Fluoride	<0.5	<0.5	<5	<5	10	150	
Sulphate (soluble)	2.6	<2	26	<20	1000	20000	
Total Dissolved Solids	33.2	<10	332	<100	4000	60000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	
Dissolved Organic Carbon	6.53	<3	65.3	<30	500	800	

Leach Test Information

Date Prepared	28-Oct-2023
pH (pH Units)	7.68
Conductivity (µS/cm)	45
Volume Leachant (Litres)	0.880

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

		CERTIFICA	TE OF ANA	LYSIS		Va	lidated
SDG: 231 Client Ref.: 6182	027-116 2	Report I L	Number: 710414 ocation: Ballyma	4 S akenny West, Dro	uperseded Rep gheda	ort:	
	CEN 10	:1 SINGLE	STAGE LEA	CHATE TES	т		
WAC ANALYTICAL RES	SULTS					REF : BS E	N 12457/2
Client Reference			Site Location		Bally	makenny Wes	t, Drogheda
Mass Sample taken (kg)	0.102		Natural Moist	ure Content (%	() 13.7	,	
Mass of dry sample (kg)	0.090		Dry Matter Co	ntent (%)	88		
Particle Size <4mm	>95%		Dry Matter 00	internt (70)	00		
Case					Landfi	II Waste Acce	eptance
SDG	231027-116					Criteria Limit	S
Lab Sample Number(s)	28855183					1	
Sampled Date						Stable	
Customer Semple Bof	TD10				Inert Waste	Non-reactive	Hazardous
Customer Sample Ker.					Landfill	in Non-	Waste Landfill
Depth (m)	0.50 - 0.50					Hazardous Landfill	
Solid Waste Analysis	Result		l				
Total Organic Carbon (%)	0.269				3	5	6
Loss on Ignition (%)	2.26				-	-	10
Sum of 7 PCBs (mg/kg)	- <0.021				-	-	-
Mineral Oil (mg/kg) (EH_2D_AL)	<5				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.69				-	>6	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	-				-	-	-
Fluate Analysis	C2 Conc ⁿ in 10):1 eluate (mg/l)	A 2 10:1 conc [#]	leached (mg/kg)	Limit value	s for compliance l	eaching test
	Result	Limit of Detection	Result	Limit of Detection	USING BS	en 12457-3 at L	/S 10 I/kg
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00886	<0.0002	0.0886	<0.002	20	100	300
Cadmium	<0.0008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.000701	<0.0003	0.00701	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	< 0.003	< 0.003	< 0.03	<0.03	0.5	10	30
Nickel	0.000449	<0.0004	0.00449	< 0.004	0.4	10	40
	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Selenium	<0.001	<0.001	< 0.01	<0.01	0.06	0.7	5 7
Zinc	<0.001	<0.001	<0.01	<0.01	0.1	50	200
Chloride	<0:001	<0.001	<20	<20	800	15000	25000
Fluoride	0.535	< 0.5	5.35	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	68.8	<10	688	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000

Leach Test Information

Date Prepared	28-Oct-2023
pH (pH Units)	8.68
Conductivity (µS/cm)	93
Volume Leachant (Litres)	0.888

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20 \pm 5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

		CERTIFICA	TE OF ANA	LYSIS		Va	lidated
SDG: 2310 Client Ref.: 6182	27-116	Report I L	Number: 71041 ocation: Ballyma	4 S akenny West, Dro	uperseded Rep gheda	ort:	
	CEN 10	:1 SINGLE	STAGE LEA	CHATE TES	т		
WAC ANALYTICAL RES	ULTS					REF : BS E	N 12457/2
Client Reference			Site Location		Bally	makenny Wes	t, Drogheda
Mass Sample taken (kg)	0.115		Natural Moist	ure Content (%	() 28.8		-
Mass of dry sample (kg)	0.090		Dry Matter Co	ontent (%)	77.6		
Particle Size <4mm	>95%			(,,,)			
Case					Landfi	II Waste Acce	eptance
SDG	231027-116					Criteria Limit	s
Lab Sample Number(s)	28855184						
Sampled Date						Stable	
Customer Sample Ref	ST3				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non-	Waste Landfill
	0.00 - 0.00					Landfill	
Solid Waste Analysis	Result				-		
Total Organic Carbon (%)	2.66				3	5	6
Loss on Ignition (%)	7.01				-	-	10
Sum of 7 PCBs (mg/kg)	- <0.021				1		-
Mineral Oil (mg/kg) (EH_2D_AL)	6.46				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.09				-	>6	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 10	0:1 eluate (mg/l)	A ₂ 10:1 conc ^r	¹ leached (mg/kg)	Limit value using BS	s for compliance le EN 12457-3 at L	eaching test /S 10 l/kg
Arcopio	Result	Limit of Detection	Result	Limit of Detection	0.5	2	25
Barium	0.00119	<0.0003	0.0688	<0.003	20	100	300
Cadmium	<0.0008	<0.0002	<0.0008	<0.002	0.04	1	5
Chromium	<0.00000	<0.00000	<0.0000	<0.000	0.5	10	70
Copper	0.00526	<0.0003	0.0526	<0.003	2	50	100
Mercury Dissolved (CVAF)	0.0000116	<0.00001	0.000116	< 0.0001	0.01	0.2	2
Molybdenum	< 0.003	< 0.003	< 0.03	< 0.03	0.5	10	30
Nickel	0.00102	< 0.0004	0.0102	<0.004	0.4	10	40
Lead	0.000375	<0.0002	0.00375	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	0.994	<0.5	9.94	<5	10	150	500
Sulphate (soluble)	2.3	<2	23	<20	1000	20000	50000
Total Dissolved Solids	103	<10	1030	<100	4000	60000	100000
Iotal Monohydric Phenols (W)	< 0.016	< 0.016	<0.16	<0.16	1	-	-
		Ŭ					1000

Leach Test Information

Date Prepared	28-Oct-2023
pH (pH Units)	8.32
Conductivity (µS/cm)	134
Volume Leachant (Litres)	0.875

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20 \pm 5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

CERTIFICATE OF ANALYSIS

Report Number: 710414 Superse Location: Ballymakenny West, Drogheda

Superseded Report:

SDG: 231027-116 **Client Ref.:** 6182

Table of Results - Appendix

Description Method No PM024 Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material PM115 Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step TM018 Determination of Loss on Ignition TM089 Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12) TM090 Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water TM104 Determination of Fluoride using the Kone Analyser TM116 Determination of Volatile Organic Compounds by Headspace / GC-MS TM123 The Determination of Total Dissolved Solids in Water TM132 ELTRA CS800 Operators Guide TM133 Determination of pH in Soil and Water using the GLpH pH Meter TM151 Determination of Hexavalent Chromium using Kone analyser TM152 Analysis of Aqueous Samples by ICP-MS TM168 Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils TM181 Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES TM183 Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry TM184 The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers TM218 The determination of PAH in soil samples by GC-MS TM256 Determination of pH, EC, TDS and Alkalinity in Aqueous samples TM259 Determination of Phenols in Waters and Leachates by HPLC TM410 Determination of Coronene in soils by GCMS TM414 Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID TM415 Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Test Completion Dates

Lab Sample No(s)	28855184	28855181	28855182	28855183
Customer Sample Ref.	ST3	TP1	TP7	TP10
AGS Ref.				
Denth	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50
Type				
Туре	5011/50110 (5)	5011/50110 (5)	5011/50110 (5)	5011/50110 (5)
Anions by Kone (w)	02-Nov-2023	02-Nov-2023	02-Nov-2023	03-Nov-2023
CEN 10:1 Leachate (1 Stage)	30-Oct-2023	30-Oct-2023	30-Oct-2023	30-Oct-2023
CEN Readings	02-Nov-2023	02-Nov-2023	02-Nov-2023	02-Nov-2023
Chromium III	02-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
Coronene	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
Dissolved Metals by ICP-MS	02-Nov-2023	02-Nov-2023	02-Nov-2023	02-Nov-2023
Dissolved Organic/Inorganic Carbon	09-Nov-2023	07-Nov-2023	09-Nov-2023	09-Nov-2023
EPH by GCxGC-FID	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
EPH CWG GC (S)	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
Fluoride	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
GRO by GC-FID (S)	31-Oct-2023	31-Oct-2023	31-Oct-2023	31-Oct-2023
Hexavalent Chromium (s)	31-Oct-2023	31-Oct-2023	31-Oct-2023	31-Oct-2023
Loss on Ignition in soils	03-Nov-2023	03-Nov-2023	03-Nov-2023	02-Nov-2023
Mercury Dissolved	02-Nov-2023	02-Nov-2023	02-Nov-2023	02-Nov-2023
Metals in solid samples by OES	02-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
Moisture at 105C	28-Oct-2023	28-Oct-2023	28-Oct-2023	28-Oct-2023
PAH 16 & 17 Calc	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
PAH by GCMS	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
PCBs by GCMS	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
pH	01-Nov-2023	31-Oct-2023	01-Nov-2023	31-Oct-2023
pH Value of Filtered Water	02-Nov-2023	02-Nov-2023	02-Nov-2023	02-Nov-2023
Phenols by HPLC (W)	03-Nov-2023	03-Nov-2023	03-Nov-2023	03-Nov-2023
Sample description	28-Oct-2023	28-Oct-2023	28-Oct-2023	28-Oct-2023
Total Dissolved Solids on Leachates	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
Total Organic Carbon	02-Nov-2023	02-Nov-2023	02-Nov-2023	02-Nov-2023
TPH CWG GC (S)	01-Nov-2023	01-Nov-2023	01-Nov-2023	01-Nov-2023
VOC MS (S)	31-Oct-2023	31-Oct-2023	31-Oct-2023	01-Nov-2023

CERTIFICATE OF ANALYSIS

231027-116 ef: 6182 Report Number: 710414 Superso Location: Ballymakenny West, Drogheda

Superseded Report:

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 5 days after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials and soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysofile	White Asbestos
Amosite	Brow nAsbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 9 Waste Classification Report

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

6182

Description/Comments

Client: Louth County Council Engineer: Doherty Finegan Kelly

Project

Ballymakenny West

Classified by

-				
Name: Stephen Letch	Company: Site Investigations Ltd	HazWasteOnline ™ provides a two day, hazardous waste classification course that cover use of the software and both basic and advanced waste classification techniques. Cert has to be renewed every 3 years.		
Date: 09 Nov 2023 13:56 GMT	The Grange 12th Lock Road	HazWasteOnline™ Certification:	CERTIFIED	
Telephone:	Lucan	Course	Date	
00353 86817 9449	K78 F598	Hazardous Waste Classification	09 Oct 2019	
		Most recent 3 year Refresher	04 Oct 2022	

Site

Drogheda, Co. Louth

Next 3 year Refresher due by Oct 2025

Purpose of classification

2 - Material Characterisation

Address of the waste

Ballymakenny West, Drogheda, Co. Louth

Post Code N/A

SIC for the process giving rise to the waste

43130 Test drilling and boring

Description of industry/producer giving rise to the waste

Site Investigation

Description of the specific process, sub-process and/or activity that created the waste Soils recovered for environmental testing

Description of the waste

Natural soils

Job summary

#	Sample name	Dopth [m]	Classification Posult	Hazard proportion	WAC Results		Page
#	Sample name	Deptil [11]	Classification Result	riazaru properties	Inert	Non Haz	- гауе
1	ST03-0.50	0.50	Non Hazardous		Pass	Pass	5
2	TP01-0.50	0.50	Non Hazardous		Pass	Pass	9
3	TP10-0.50	0.50	Non Hazardous		Pass	Pass	13
4	TP07-0.50	0.50	Non Hazardous		Pass	Pass	17

Related documents

#	Name	Description
1	231027-116.hwol	ALS Hawarden .hwol file used to populate the Job
2	Rilta Suite NEW	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Report

Created by: Stephen Letch	Created date: 09 Nov 2023 13:56 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	21
Appendix B: Rationale for selection of metal species	22
Appendix C: Version	23

PAH Double Ratio Plots

Disclaimer

The domains, oval areas and the plotted points are **indicators only** and must be combined with other lines of evidence to form conclusions. Samples marked with an empty circle are not plotted as they fall outside of the graph's boundaries.

Credits

The domains and the horizontal and vertical lines are derived from Yunker et al. 2002 (Organic Geochemistry 33, 489-515)

ST03-0.50

Credits for the oval areas and labels HazWasteOnline, 2023; Jones Environmental Forensics, 2014; Costa & Sauer, 2005

HazWasteOnline[™]

Report created by Stephen Letch on 09 Nov 2023

HazWasteOnline, 2023; Costa & Sauer, 2005

HazWasteOnline[™] Report created by Stephen Letch on 09 Nov 2023

....

Classification of sample: ST03-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
ST03-0.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number number CAS Number			CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group				<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol				Ø							
3	4	antimony { <mark>antimor</mark> 051-005-00-X	<mark>y trioxide</mark> } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< th=""></lod<>
4	4	arsenic { arsenic pentoxide }				15.1	mg/kg	1.534	18.761	mg/kg	0.00188 %	\checkmark	
5	4	barium { [●] <mark>barium</mark> 016-002-00-X	sulphide } 244-214-4	21109-95-5		128	mg/kg	1.233	127.889	mg/kg	0.0128 %	~	
6	4	cadmium { <mark>cadmiu</mark> 048-009-00-9	<mark>m sulfate</mark> } 233-331-6	10124-36-4		0.435	mg/kg	1.855	0.653	mg/kg	0.0000653 %	\checkmark	
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) o</mark> x 215-270-7	<mark>:ide</mark> } 1317-39-1		34.4	mg/kg	1.126	31.372	mg/kg	0.00314 %	\checkmark	
8	4	lead { ^e lead comp specified elsewher	pounds with the ex e in this Annex (wo	ception of those orst case)	1	68.1	mg/kg		55.161	mg/kg	0.00552 %	V	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	molybdenum { mol 042-001-00-9	ybdenum(VI) oxide 215-204-7	} 1313-27-5		1.52	mg/kg	1.5	1.847	mg/kg	0.000185 %	~	
11	4	nickel { nickel sulfa 028-009-00-5	i <mark>te</mark> } 232-104-9	7786-81-4		37.3	mg/kg	2.637	79.662	mg/kg	0.00797 %	\checkmark	
12	4	selenium { seleniur cadmium sulphose elsewhere in this A	m compounds with elenide and those s nnex }	the exception of pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
13	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		90.2	mg/kg	2.469	180.412	mg/kg	0.018 %	~	
14	4	chromium in chrom chromium(III) oxide	nium(III) compound e (worst case) 215,160,0	ls {		24.9	mg/kg	1.462	29.478	mg/kg	0.00295 %	V	
			215-160-9	1308-38-9			0.0						

HazWasteOnline[™] Report created by Stephen Letch on 09 Nov 2023

#	EU CLP index EC Number CAS Number			LP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used	
		number			Ö							Σ	
15	4	chromium in chromium(VI) cor oxide }	npounds	s { chromium(VI)		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8	-	1333-82-0									
16		naphthalene				<0.009	ma/ka		<0.009	ma/ka	<0.000009 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5		91-20-3									
17	۲	acenaphthylene	t	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.000012 %		<lod< td=""></lod<>
18	۲	acenaphthene	r			<0.008	ma/ka		<0.008	ma/ka	<0.000008 %		<lod< td=""></lod<>
		201-469-6	8	83-32-9									
19	0	201-695-5	k	86-73-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene 201-581-5	8	85-01-8		0.0379	mg/kg		0.0307	mg/kg	0.00000307 %	~	
21	۲	anthracene				<0.016	ma/ka		<0.016	ma/ka	<0.000016 %		<lod< td=""></lod<>
		204-371-1	-	120-12-7									
22	۲	fluoranthene	ŀ	206.44.0		0.0726	mg/kg		0.0588	mg/kg	0.00000588 %	\checkmark	
		pvrene	<u> </u>	200-44-0							<u> </u>		
23		204-927-3	-	129-00-0		0.0653	mg/kg		0.0529	mg/kg	0.00000529 %	\checkmark	
24		benzo[a]anthracene				0.0475	mg/kg		0.0385	mg/kg	0.00000385 %	1	
\vdash		601-033-00-9 200-280-6		56-55-3	-							-	
25		601-048-00-0 205-923-4	4	218-01-9		0.0481	mg/kg		0.039	mg/kg	0.0000039 %	\checkmark	
26		benzo[b]fluoranthene				0.0558	mg/kg		0.0452	mg/kg	0.00000452 %	\checkmark	
		601-034-00-4 205-911-9	4	205-99-2	-								
27		601-036-00-5 205-916-6 207-08-9			_	0.021 mg/kg	mg/kg		0.017	mg/kg	0.0000017 %	\checkmark	
		benzo[a]pyrene; benzo[def]chi	rysene		+				0.0045				
28		601-032-00-3 200-028-5	, 	50-32-8		0.0426	mg/kg		0.0345	mg/kg	0.00000345 %	\checkmark	
29	۲	indeno[123-cd]pyrene				0.0292	ma/ka		0.0237	ma/ka	0.0000237 %	1	
	205-893-2 193-39-5										*		
30		dibenz[a,h]anthracene	ļ	53-70-3	-	<0.023	mg/kg		<0.023	mg/kg	<0.000023 %		<lod< td=""></lod<>
24		benzo[ghi]perylene	ſ			0.0040			0.0050		0.00000050.0/		
31		205-883-8	-	191-24-2		0.0318	mg/kg		0.0258	mg/kg	0.00000258 %	\checkmark	
32	۲	polychlorobiphenyls; PCB				<0.021	ma/ka		<0.021	ma/ka	<0.000021 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1	-	1336-36-3	_								
33		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane				<0.0005	ma/ka		< 0.0005	ma/ka	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4			1								
34		benzene				<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2											
35		toluene		100.00.0		0.0047	mg/kg		0.0038	mg/kg	0.00000385 %	\checkmark	
	0	ethylbenzene	[100-00-3	+								
36		601-023-00-4 202-849-4	-	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene		191_07_1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	۲	pH				8.09	pН		8.09	pН	8.09 pH		
		PH			-					P' '	p		
39		o-xyiene; [1] p-xyiene; [2] m-xy 601-022-00-9 202-422-2 203-396-5 203-576-3 215-538-7	yiene; [3] [1] [2] [3] [4]	J xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
\vdash		210-000-1	19		1					Total:	0.0539 %		<u> </u>

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 3.85e-07%)

WAC results for sample: ST03-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	2.66	3	5
2	LOI (loss on ignition)	%	7.01	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	0.0047	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	6.46	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	pН	8.09	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.0119	0.5	2
10	barium	mg/kg	0.0688	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0526	2	50
14	mercury	mg/kg	0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0102	0.4	10
17	lead	mg/kg	0.0037	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	9.94	10	150
23	sulphate	mg/kg	23	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	79	500	800
26	TDS (total dissolved solids)	mg/kg	1030	4,000	60,000

Key

User supplied data

....

Classification of sample: TP01-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
TP01-0.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	IOT arisen from die	esel or petrol									
3	4	antimony { <mark>antimor</mark> 051-005-00-X	<mark>y trioxide</mark> } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic p 033-004-00-6	<mark>entoxide</mark> } 215-116-9	1303-28-2		8.3	mg/kg	1.534	10.567	mg/kg	0.00106 %	~	
5	6	barium { [●] <mark>barium</mark> 016-002-00-X	sulphide } 244-214-4	21109-95-5		144	mg/kg	1.233	147.427	mg/kg	0.0147 %	~	
6	4	cadmium {	<mark>m sulfate</mark> } 233-331-6	10124-36-4		<0.02	mg/kg	1.855	<0.0371	mg/kg	<0.00000371 %		<lod< td=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>ide</mark> } 1317-39-1		13.7	mg/kg	1.126	12.802	mg/kg	0.00128 %	~	
8	4	lead { <a>lead comp specified elsewher	pounds with the exe e in this Annex (wo	ception of those rst case) }	1	16.6	mg/kg		13.778	mg/kg	0.00138 %	~	
9	4	082-001-00-6 mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	molybdenum { mol [·] 042-001-00-9	ybdenum(VI) oxide 215-204-7	}		<0.1	mg/kg	1.5	<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
11	4	nickel { nickel sulfa 028-009-00-5	i <mark>te</mark> } 232-104-9	7786-81-4		41.5	mg/kg	2.637	90.821	mg/kg	0.00908 %	~	
12	4	selenium { seleniur cadmium sulphose elsewhere in this A	m compounds with lenide and those s nnex }	the exception of pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4	zinc {	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		63.4	mg/kg	2.469	129.939	mg/kg	0.013 %	~	
14	4	chromium in chrom chromium(III) oxide	nium(III) compound e (worst case) b15,160,0	s {		33.5	mg/kg	1.462	40.639	mg/kg	0.00406 %	~	
		<u> </u>	K 10-100-9	1200-20-2									

#		Determinand	AS Number	-	User entered data	Conv. Factor	Compound conc.	Classification value	C Applied	Conc. Not Used
		number		5					ĕ	
15	4	chromium in chromium(VI) compounds { closed exact and a closed exact and c	hromium(VI)		<0.6 mg/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333	3-82-0						\square	
16		601-052-00-2 202-049-5 91-2	20-3		<0.009 mg/kg		<0.009 mg/kg	<0.000009 %		<lod< td=""></lod<>
17	٥	acenaphthylene			<0.012 mg/kg		<0.012 mg/kg	<0.000012.%		
17		205-917-1 208-	-96-8		<0.012 Ilig/kg		~0.012 Hig/kg	<0.0000012 /8		LOD
18	0	acenaphthene	22.0		<0.008 mg/kg		<0.008 mg/kg	<0.000008 %		<lod< td=""></lod<>
		201-409-0 p3-3	52-9						Η	
19	Ĩ	201-695-5 86-7	/3-7		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
20	۲	phenanthrene 201-581-5 85-0)1-8		<0.015 mg/kg		<0.015 mg/kg	<0.000015 %		<lod< td=""></lod<>
21		anthracene			<0.016 ma/ka		<0.016 ma/ka	<0.000016 %		<lod< td=""></lod<>
		204-371-1 120-	-12-7							
22	۲	fluoranthene	44.0		<0.017 mg/kg		<0.017 mg/kg	<0.0000017 %		<lod< td=""></lod<>
	-	205-912-4 206-	-44-0						\vdash	
23		204-927-3 129-	-00-0		<0.015 mg/kg		<0.015 mg/kg	<0.000015 %		<lod< td=""></lod<>
24		benzo[a]anthracene			<0.014 ma/ka		<0.014 mg/kg	<0.0000014.%		
24		601-033-00-9 200-280-6 56-5	55-3		<0.014 Ilig/kg		~0.014 Hig/kg	<0.0000014 //		LOD
25		chrysene 601-048-00-0 205-923-4 218-	-01-9		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthene			<0.015 mg/kg		<0.015 mg/kg	<0.000015 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9 205-	-99-2							
27		601-036-00-5 205-916-6 207-	-08-9		<0.014 mg/kg		<0.014 mg/kg	<0.0000014 %		<lod< td=""></lod<>
		benzolalpyrene: benzoldeflchrysene	-00-3						H	
28		601-032-00-3 200-028-5 50-3	32-8		<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	۲	indeno[123-cd]pyrene			<0.018 ma/ka		<0.018 ma/ka	<0.000018 %		<lod< td=""></lod<>
_		205-893-2 193-	-39-5							
30		dibenz[a,h]anthracene	70.2		<0.023 mg/kg		<0.023 mg/kg	<0.000023 %		<lod< td=""></lod<>
-		benzo[ahilpervlene	0-3						\vdash	
31	Ŭ	205-883-8 191-	-24-2		<0.024 mg/kg		<0.024 mg/kg	<0.000024 %		<lod< td=""></lod<>
32	۲	polychlorobiphenyls; PCB			<0.021 ma/ka		<0.021 ma/ka	<0.000021 %		<i od<="" td=""></i>
		602-039-00-4 215-648-1 1336	6-36-3							-205
33		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropage			<0.0005 ma/ka		<0.0005 ma/ka	<0.0000005 %		<1.0D
		603-181-00-X 216-653-1 1634	4-04-4	<0.0005 mg/kg		ing/kg			205	
34		benzene			<0.001 mg/kg		<0.001 ma/ka	<0.000001 %		
		601-020-00-8 200-753-7 71-4	3-2					0.00000178		-200
35					<0.001 mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
\vdash		p01-021-00-3 203-625-9 108-	-88-3	+					\vdash	
36	9	601-023-00-4 202-849-4 100-	-41-4		<0.001 mg/kg		<0.001 mg/kg	<0.000001 %		<lod< td=""></lod<>
27		coronene		+	<0.2 malka		<0.2 maller	<0.00002.9/	Π	
		205-881-7 191-	-07-1		50.2 mg/kg			0.00002 /0		~LOD
38	۲	pH			7.67 pH		7.67 pH	7.67 pH		
\vdash		o-xylene: [1] p-xylene: [2] m-xylene: [3] yyl	lene [4]	+					\vdash	
39		601-022-00-9 202-422-2 [1] 95-4 203-396-5 [2] 106- 203-576-3 [3] 108- 215-535-7 [4] 133(42-3 [2] -38-3 [3] 0-20-7 [4]		<0.004 mg/kg		<0.004 mg/kg	<0.000004 %		<lod< td=""></lod<>
							Tota	. 0.046 %	Η	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

WAC results for sample: TP01-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.294	3	5
2	LOI (loss on ignition)	%	3.7	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	pН	7.67	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0148	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0065	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	<0.004	0.4	10
17	lead	mg/kg	0.0026	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	27	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	48.6	500	800
26	TDS (total dissolved solids)	mg/kg	212	4,000	60,000

Key

User supplied data

....

Classification of sample: TP10-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
TP10-0.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
10%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 10% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	۲	TPH (C6 to C40) p	etroleum group	TDU		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	IOT arisen from die	esel or petrol									
2					1								
3	4	antimony {	<mark>1y trioxide</mark> } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	8	arsenic { arsenic p 033-004-00-6	entoxide }	1303-28-2		10.6	mg/kg	1.534	14.633	mg/kg	0.00146 %	\checkmark	
5	4	barium { [●] barium 016-002-00-X	sulphide }	21109-95-5		106	mg/kg	1.233	117.675	mg/kg	0.0118 %	V	
6	4	cadmium { <mark>cadmiu</mark> 048-009-00-9	<mark>m sulfate</mark> } 233-331-6	10124-36-4		0.0256	mg/kg	1.855	0.0427	mg/kg	0.00000427 %	\checkmark	
7	4	copper { dicopper {	oxide; copper (I) ox 215-270-7	<mark>ide</mark> } 1317-39-1		20.3	mg/kg	1.126	20.57	mg/kg	0.00206 %	\checkmark	
8	4	lead { [●] lead com specified elsewher	pounds with the exe e in this Annex (wo	ception of those orst case) }	1	13.6	mg/kg		12.24	mg/kg	0.00122 %	~	
		082-001-00-6	disblarida)										
9	~	080-010-00-X	231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	-	molybdenum { mol	ybdenum(VI) oxide	}		0 315	ma/ka	15	0.425	ma/ka	0 0000425 %	/	
		042-001-00-9	215-204-7	1313-27-5		0.010	iiig/kg	1.0	0.420	mg/kg	0.0000420 //	~	
11	4	nickel { nickel sulfa 028-009-00-5	l <mark>te</mark> } 232-104-9	7786-81-4		38.5	mg/kg	2.637	91.361	mg/kg	0.00914 %	\checkmark	
12	4	selenium { <mark>seleniu</mark> cadmium sulphose elsewhere in this A	m compounds with elenide and those s annex }	the exception of pecified		1.37	mg/kg	1.405	1.732	mg/kg	0.000173 %	~	
		034-002-00-8]								
13	4	2inc { <mark>2inc suiphate</mark> 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		62.2	mg/kg	2.469	138.231	mg/kg	0.0138 %	V	
14	\$	chromium in chron chromium(III) oxide	nium(III) compound e (worst case) }	s { •		23.1	mg/kg	1.462	30.386	mg/kg	0.00304 %	~	
			K12-100-8	1308-38-8								1	

#		Determinand	S Number		User entered data	Conv. Factor	Compound conc.	Classification value	C Applied	Conc. Not Used
		number		5					ž	
15	4	chromium in chromium(VI) compounds { chi oxide }	romium(VI)		<0.6 mg/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-	-82-0							
16		601-052-00-2 202-049-5 91-20)-3		<0.009 mg/kg		<0.009 mg/kg	<0.000009 %		<lod< td=""></lod<>
17	۲	acenaphthylene			<0.012 mg/kg		<0.012 ma/ka	<0.000012.%		
17		205-917-1 208-9	96-8		~0.012 Hig/kg		~0.012 Hig/kg	<0.0000012 /8		LOD
18	۲	acenaphthene			<0.008 mg/kg		<0.008 mg/kg	<0.000008 %		<lod< td=""></lod<>
		fluorene	-9							
19	Ĩ	201-695-5 86-73	3-7		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
20	۹	phenanthrene 201-581-5 85-01	-8		<0.015 mg/kg		<0.015 mg/kg	<0.000015 %		<lod< td=""></lod<>
21	۲	anthracene			<0.016 ma/ka		<0.016 ma/ka	<0.000016 %		<lod< td=""></lod<>
		204-371-1 120-1	2-7							
22	۲	fluoranthene	4.0		<0.017 mg/kg		<0.017 mg/kg	<0.0000017 %		<lod< td=""></lod<>
	_	205-912-4 200-4	14-0							
23		204-927-3 129-0	0-0		<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracene			<0.014 ma/ka		<0.014 ma/ka	<0.000014 %		<1.0D
27		601-033-00-9 200-280-6 56-55	5-3							-200
25		chrysene 601-048-00-0 205-923-4 218-0)1-9		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthene			<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %		<lod< td=""></lod<>
_		601-034-00-4 205-911-9 205-9	9-2	+						
27		601-036-00-5 205-916-6 207-0)8-9		<0.014 mg/kg		<0.014 mg/kg	<0.0000014 %		<lod< td=""></lod<>
200		benzo[a]pyrene; benzo[def]chrysene			<0.015 mg///g		<0.015 mg/kg	<0.0000015.0/		
20		601-032-00-3 200-028-5 50-32	2-8		<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	۲	indeno[123-cd]pyrene			<0.018 mg/kg		<0.018 mg/kg	<0.0000018 %		<lod< td=""></lod<>
		205-893-2 193-3	39-5							
30		601-041-00-2 200-181-8 53-70)-3		<0.023 mg/kg		<0.023 mg/kg	<0.000023 %		<lod< td=""></lod<>
21		benzo[ghi]perylene			<0.024 mg///g		<0.024 mg/kg	<0.0000024.9/		
31		205-883-8 191-2	24-2		<0.024 mg/kg		<0.024 mg/kg	<0.000024 %		<lod< td=""></lod<>
32	۲	polychlorobiphenyls; PCB			<0.021 mg/kg		<0.021 mg/kg	<0.0000021 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-	-36-3							
33		2-methoxy-2-methylpropane			<0.0005 mg/kg		<0.0005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-	-04-4							
34		benzene			<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43	3-2							
35		toluene	18-3		0.0012 mg/kg		0.0011 mg/kg	0.000000116 %	\checkmark	
		ethylbenzene		╡	-0.001 "		10.001	-0.0000001.01		
36		601-023-00-4 202-849-4 100-4	1-4		<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	۲	coronene 205-881-7 191-0)7-1		<0.2 mg/kg		<0.2 mg/kg	<0.00002 %		<lod< td=""></lod<>
38	٥	рН			8.69 pH		8.69 pH	8.69 pH		
\vdash	-	o-xylene; [1] p-xylene; [2] m-xylene: [3] xyle	ene [4]	+						
39		601-022-00-9 202-422-2 [1] 95-47 203-396-5 [2] 106-4 203-576-3 [3] 108-3 215-535-7 [4] 1330-	7-6 [1] [2-3 [2] [88-3 [3] [-20-7 [4]		<0.004 mg/kg		<0.004 mg/kg	<0.0000004 %		<lod< td=""></lod<>
		F 200 . [1] [1000					Total	0.044 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 1.16e-07%)

WAC results for sample: TP10-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.269	3	5
2	LOI (loss on ignition)	%	2.26	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	0.0012	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	pН	8.69	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0886	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.007	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0044	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	5.35	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800
26	TDS (total dissolved solids)	mg/kg	688	4,000	60,000

Key

User supplied data

....

Classification of sample: TP07-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
TP07-0.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(wet weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	۲	TPH (C6 to C40) p	etroleum group	три		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
		confirm TPH has N	IOT arisen from die	esel or petrol									
2													
3	4	antimony {	<mark>y trioxide</mark> } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	\$	arsenic { <mark>arsenic p</mark> 033-004-00-6	<mark>entoxide</mark> } 215-116-9	1303-28-2		10.4	mg/kg	1.534	13.559	mg/kg	0.00136 %	~	
5	*	barium { [●] <mark>barium</mark> 016-002-00-X	sulphide } 244-214-4	21109-95-5		174	mg/kg	1.233	182.434	mg/kg	0.0182 %	~	
6	4	cadmium { <mark>cadmiu</mark> 048-009-00-9	<mark>m sulfate</mark> } 233-331-6	10124-36-4		<0.02	mg/kg	1.855	<0.0371	mg/kg	<0.00000371 %		<lod< td=""></lod<>
7	\$	copper { <mark>dicopper (</mark> 029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>ide</mark> } 1317-39-1		22	mg/kg	1.126	21.054	mg/kg	0.00211 %	~	
8	*	lead { [●] lead com specified elsewher	pounds with the exe e in this Annex (wo	ception of those rst case)	1	25.9	mg/kg		22.015	mg/kg	0.0022 %	~	
9	4	082-001-00-6 mercury { mercury	dichloride }		$\left \right $	<0.1	ma/ka	1 353	<0 135	ma/ka	<0.0000135 %		
		080-010-00-X	231-299-8	7487-94-7	1			1.000	-0.100	mg/kg			-205
10	4	molybdenum { mol	ybdenum(VI) oxide	}		0.163	mg/kg	1.5	0.208	mg/kg	0.0000208 %	\checkmark	
11	*	nickel { nickel sulfa	te }	7786-81-4		43.8	mg/kg	2.637	98.164	mg/kg	0.00982 %	~	
12	4	selenium { selenium cadmium sulphose elsewhere in this A	m compounds with elenide and those s annex }	the exception of pecified		1.46	mg/kg	1.405	1.744	mg/kg	0.000174 %	~	
13	4	034-002-00-8 zinc { zinc sulphate	e }	7446 10 7 [1]	-	64.3	ma/ka	2,469	134.959	ma/ka	0.0135 %	1	
		020-000-00-3	231-793-3 [1]	7446-19-7 [1] 7733-02-0 [2]								×	
14	4	chromium in chron chromium(III) oxide	hium(III) compound (worst case) }	s {		30.1	mg/kg	1.462	37.394	mg/kg	0.00374 %	\checkmark	
			K12-100-8	1308-38-9							<u> </u>		

#	EU CLP index EC Number CAS Number		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used		
15	4	chromium in chrom	hium(VI) compound	ds { chromium(VI)		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
16		naphthalene	202-049-5	91-20-3	_	<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	۲	acenaphthylene	205-917-1	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	۲	acenaphthene	201-469-6	83-32-9		<0.008	mg/kg		<0.008	mg/kg	<0.000008 %		<lod< td=""></lod<>
19	۲	fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	۲	phenanthrene	201-581-5	85-01-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	۲	anthracene	204-371-1	120-12-7	_	<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	9	fluoranthene	205-912-4	206-44-0	_	<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	۲	pyrene	204-927-3	129-00-0	_	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3	_	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	_	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
28		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	۲	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3	_	<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	۲	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	۹	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3	_	<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane 216-653-1	1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
34		benzene 601-020-00-8	200-753-7	71-43-2	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene 601-021-00-3	203-625-9	108-88-3	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	۲	ethylbenzene 601-023-00-4	202-849-4	100-41-4	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
37	۲	coronene	205-881-7	191-07-1	-	<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	۲	рН		PH		8.31	pН		8.31	рН	8.31 pH		
39		o-xylene; [1] p-xyle 601-022-00-9	ene; [2] m-xylene; [202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	3] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
										Total:	0.0524 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

WAC results for sample: TP07-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.528	3	5
2	LOI (loss on ignition)	%	3.89	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	pН	8.31	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.0051	0.5	2
10	barium	mg/kg	0.271	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	0.0121	0.5	10
13	copper	mg/kg	0.0198	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0116	0.4	10
17	lead	mg/kg	0.0034	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0519	4	50
21	chloride	mg/kg	26	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	26	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	65.3	500	800
26	TDS (total dissolved solids)	mg/kg	332	4,000	60,000

Key

User supplied data

Appendix A: Classifier defined and non EU CLP determinands

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

[®] confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350 (HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)

EU CLP index number: 016-002-00-X Description/Comments: Additional Hazard Statement(s): EUH031 >= 0.8 % Reason for additional Hazards Statement(s): 14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2

Iead compounds with the exception of those specified elsewhere in this Annex (worst case)

EU CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

Iluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

HazWasteOnline[™]

Report created by Stephen Letch on 09 Nov 2023

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

[®] pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

[•] indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied. Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s): 29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

^e coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic. Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario.

arsenic {arsenic pentoxide}

Arsenic pentoxide used as most hazardous species.

HazWasteOnline[™]

Report created by Stephen Letch on 09 Nov 2023

barium {barium sulphide}

Chromium VI at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present.

cadmium {cadmium sulfate}

Cadmium sulphate used as the most hazardous species.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel sulfate}

Chromium VI at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Chromium VI at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021 HazWasteOnline Classification Engine Version: 2023.312.5802.10733 (08 Nov 2023) HazWasteOnline Database: 2023.312.5802.10733 (08 Nov 2023)

This classification utilises the following guidance and legislation: WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 17th ATP - Regulation (EU) 2021/849 of 11 March 2021 18th ATP - Regulation (EU) 2022/692 of 16 February 2022 19th ATP - Regulation (EU) 2023/1434 of 25 April 2023 20th ATP - Regulation (EU) 2023/1435 of 25 2 May 2023

Appendix 10 Survey Data

Survey Data

Leastion	Irish Transve	erse Mercator	Flowetien	Irish National Grid					
Location	Easting Northing		Elevation	Easting	Northing				
		Cable Percus	sive Borehole	es					
BH01	709089.053	777033.284	30.64	309161.580	277016.243				
BH02	708931.607	776968.084	28.85	309004.101	276951.028				
	Trial Pits								
TP01	708908.947	776989.400	28.92	308981.436	276972.349				
TP02	708997.011	777034.300	29.74	309069.518	277017.259				
TP03	709036.445	777056.301	30.33	309108.961	277039.265				
TP04	709073.883	777076.503	30.48	309146.406	277059.472				
TP05	708962.323	776973.124	29.32	309034.824	276956.070				
TP06	709043.881	777008.579	30.34	309116.399	276991.533				
TP07	708890.153	776904.683	28.65	308962.639	276887.613				
TP08	708960.611	776926.812	29.27	309033.112	276909.748				
TP09	709011.028	776951.722	29.94	309083.539	276934.663				
TP10	709100.507	776994.633	30.78	309173.037	276977.584				
		Slit Tr	enches						
ST01 Start	709114.219	777091.097	32.65	309186.751	277074.069				
ST01 End	709108.472	777089.739	31.41	309181.003	277072.711				
ST02 Start	709119.246	777072.791	32.78	309191.779	277055.759				
ST02 End	709113.544	777071.011	31.66	309186.076	277053.979				
ST03 Start	709122.762	777056.829	32.82	309195.296	277039.794				
ST03 End	709117.249	777054.764	31.91	309189.782	277037.728				
ST04 Start	709126.583	777038.904	32.94	309199.118	277021.865				
ST04 End	709121.959	777037.489	32.16	309194.493	277020.449				
ST05 Start	709130.518	777019.445	32.99	309203.054	277002.402				
ST05 End	709125.300	777018.445	32.02	309197.835	277001.401				
ST06 Start	709079.538	776982.910	30.87	309152.063	276965.858				
ST06 End	709076.829	776988.846	30.50	309149.354	276971.796				
ST07 Start	708941.350	776994.310	28.98	309013.846	276977.260				
ST07 End	708937.704	776999.261	28.86	309010.199	276982.212				

Appendix G – Confirmation of Feasibility

CONFIRMATION OF FEASIBILITY

Justin Sexton Housing Capital Civic Offices Fair Street, Drogheda Co. Louth A92P440 **Uisce Éireann** Bosca OP 448 Oifig Sheach adta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

19 June 2023

Our Ref: CDS23002134 Pre-Connection Enquiry LH-0014, Ballymakenny West, Drogheda, Louth

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Irish Water has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 126 unit(s) at LH-0014, Ballymakenny West, Drogheda, Louth, (the **Development**).

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection F
 I
- Feasible Subject to upgrades
 - In order to accommodate the proposed connection at the Premises, upgrade works are required to increase the capacity of the Uisce Éireann network. Uisce Éireann currently has a project on our current investment plan which will provide the upgrades and capacity which is due to be completed by Q4 in 2023 (this may be subject to change). No connection can be facilitated prior to these works being completed.
- Wastewater Connection -
- Feasible Subject to upgrades In order to accommodate the proposed connection at the Premises, upgrade works are required to increase the capacity of the Uisce Éireann network. Uisce Éireann currently has a project on

Stiúrthóirí / Directors: Tony Keohane (Chairman), Niall Gleeson (CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh

Oifig Chláraithe / Registered Office: Teach Colvill, 24–26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24–26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363 our current investment plan (Green Hill sewer Upgrade) which will provide the upgrades and capacity which is due to be completed by Q4 in 2023 (this may be subject to change). No connection can be facilitated prior to these works being completed.

Connection could be feasible to a 225mm sewer in Ballymakenny Road which is not shown on our GIS which discharges further south of the development along Ballymakenny Road, a manhole survey to determine CL's & IL's would be required by the developer before proceeding further to connection stage.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before the Development can be connected to our network(s) you must submit a connection application <u>and be granted and sign</u> a connection agreement with Irish Water.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

- Section A What is important to know?
- Section B Details of Irish Water's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Irish Water's network(s). This is not a connection offer and capacity in Irish Water's network(s) may only be secured by entering into a connection agreement with Irish Water.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	• Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Irish Water's network(s).
	 Before the Development can connect to Irish Water's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Irish Water.
When should I submit a Connection Application?	A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	 Irish Water connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Irish Water's network(s), including works in the public space, must be carried out by Irish Water*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Irish Water's network(s)?	 Requests for maps showing Irish Water's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	 The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Irish Water</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	 More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u> **trade effluent is defined in the Local Government (Water
	Pollution) Act, 1977 (as amended)

Section B – Details of Irish Water's Network(s)

The map included below outlines the current Irish Water infrastructure adjacent the Development: To access Irish Water Maps email <u>datarequests@water.ie</u>

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Irish Water's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Irish Water.

Whilst every care has been taken in respect of the information on Irish Water's network(s), Irish Water assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Irish Water's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Irish Water's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Appendix H – Road Safety Audit

23185-02-001

SHD SITES LOUTH BALLYMAKENNY ROAD, DROGHEDA

Road Safety Audit Stage 1

for

Hayes Higgins Partnership

April 2024

ROADPLAN CONSULTING

7, Ormonde Road Kilkenny. R95 N4FE

Tel: 056 7795800 info@roadplan.ie www.roadplan.ie

DOCUMENT CONTROL SHEET

Project Title	SHD Sites Louth – Ballymakenny Road Drogheda
Project No.	23185-02
Client	Hayes Higgins Partnership
Document Title	Road Safety Audit Stage 1
Document No.	23185-02-001

Status	Author(s)	Reviewed By	Approved By	Issue Date
Draft 1	RB / DD	RB / DD	GF	20/2/24
Final	RB / DD	RB / DD	GF	11/4/24
	As per Se	ection 3.1		

TABLE OF CONTENTS

1.	INTRODUCTION	4			
2.	STAGE 1 AUDIT	5			
3.	AUDIT TEAM STATEMENT	8			
4.	SAFETY AUDIT FEEDBACK FORM	9			
APF	APPENDIX A				

1. INTRODUCTION

- 1.1 This report describes a Stage 1 Road Safety Audit carried out at a proposed housing development. The proposed project is off the Ballymakenny Road, Drogheda, County Louth in the townland of Yellowbatter. The audit was carried out on 13th of February 2024 in the offices of Roadplan Consulting, Kilkenny.
- 1.2 The audit team members were as follows:
 - Ray Butler, BE CEng MIEI Auditor Number RB210538
 - Dermot Donovan, BE CEng FIEI Auditor Number DD50250
- 1.3 Dermot Donovan visited the site on the 24th of January 2024. The audit comprised of an examination of the drawings relating to the scheme supplied by Hayes Higgins Partnership and an examination of the site.
- 1.4 The speed limit at the proposed works location on the Ballymakenny Road is 50 km/h. A speed limit of 30km/h is assumed to be applied to the housing estate roads.
- 1.5 This Stage 1 Audit has been carried out in accordance with the relevant sections of TII GE-STY-01024. The team has examined only those issues within the design relating to the road safety implications of the scheme and has therefore not examined or verified the compliance of the design to any other criteria.
- 1.6 All problems described in this report are considered by the audit team to require action in order to improve the safety of the scheme and minimise accident occurrence.
- 1.7 Appendix A contains copies of the audited drawings.

2. STAGE 1 AUDIT

Location: Main access road

2.1 **Problem:** Turning areas for vehicles

Parallel parking bays are provided on the main access road. However, areas where vehicles might turn to exit the housing estate are only provided in the two cul-de-sacs and at the end of the main access road. Drivers must either travel to the turning area at the end of the main access road or attempt a 3-point turn at their parking space. This puts pedestrians, particularly children who may be playing on the roadway, at risk of injury from a collision with a motor vehicle.

Recommendation:

Provide additional turning bays for vehicles.

Location: Main access road

2.2 **Problem:** Right angle bends

There are five low-radius right-angle bends on the access road. Large vehicles, such as refuse trucks, may have to mount the footpaths to negotiate the bends putting pedestrians at risk of collisions and injury.

Recommendation:

Carry out an auto track analysis and provide additional width on curves if necessary.

Location: Main access road

2.3 **Problem:** High speed

The section of road between the access to the development and dwelling number 15 (Block 4) is relatively long and straight so motor vehicles may travel relatively fast. Pedestrians entering the road to cross it may be obscured from a driver's view by vehicles parked on the roadsides. In such circumstances, the risk of occurrence of injury collisions between pedestrians and vehicles may increase.

Recommendation:

Provide measures to restrict speed of vehicles on this section of road.

Location: Development access

2.4 **Problem:** Junction layout

The intended layout of the mouth of the access onto the Ballymakenny Road is unclear: the radiused kerb lines appear to address the existing grass verge rather than the road edge. It may be the case that an indented bay is to be formed to accommodate on-road drop-off at school time; if so, vehicles stopped on the roadside at the access could obstruct the sightlines of drivers exiting the development, increasing the collision risk.

Recommendation:

Provide a conventional access layout and ensure that visibility splays are not obstructed by parked vehicles.

Location: Entire development

2.5 **Problem:** Crossings at junctions

Facilities for pedestrians to cross the road are not provided at the mouth of the development access or within the development at the junctions and other locations where they will cross. This may increase difficulty for pedestrians, particularly those with restricted mobility, and may increase the risk of their being struck by motor vehicles.

Recommendation:

Provide dropped kerbs and tactile paving to facilitate pedestrians in crossing the road.

Location: Spine road of development

2.6 **Problem:** Crossings on bends

Pedestrian crossings are shown to be provided on bends on the spine road. Pedestrians who are crossing from the insides of bends may not be seen by approaching drivers if visibility is obstructed by parked vehicles or by planting. This may increase the risk of pedestrians being struck by motor vehicles. Examples of such locations are shown in the following images.

Recommendation:

It should be ensured that there is adequate inter-visibility between pedestrians waiting to cross and approaching drivers.

Location: Entire Development

2.7 **Observation:** Cycle Parking

Some dwellings are terraced and do not have exterior access to rear gardens. Provision should be made for cycle parking so that bikes need not be wheeled through the dwellings.

3. **AUDIT TEAM STATEMENT**

3.1 We certify that we have examined the drawings listed in Appendix A and have inspected the site. This examination has been carried out with the sole purpose of identifying any features of the scheme that could be removed or modified to improve the safety of the scheme.

Signed..... Ray Butler

Date13th February 2024.....

Signed...... Dermot Donovan Dermot Donovan

Date13th February 2024.....

SAFETY AUDIT FEEDBACK FORM 4.

Scheme: SHD Sites Louth - Ballymakenny Road, Drogheda

Document Number: 23185-02-001

Audit Stage: Stage 1 RSA

Date Audit Completed: 13th February 2024

Paragraph		To Be Completed by Audit Team Leader			
No. in Safety Audit Report	Problem accepted (yes/no) Recommende measure Accepted (yes/no)		Describe alternative measure(s). Give reasons for not accepting recommended measure. Only complete if recommended measure is not accepted.	Alternative measures or reasons accepted by auditors (yes/no)	
2.1	Yes	No	Three turning hammerhead bays are provided within the scheme to allow for vehicles to turn	Yes	
2.2	Yes	Yes			
2.3	Yes	Yes			
2.4	Yes	Yes			
2.5	Yes	No	Raised table pedestrian crossings will be provided instead of dropped kerbs, for ease of movement of pedestrians	Yes	
2.6	Yes	Yes			
2.7	Yes	Yes			

Safety Audit Alt n Design Team Leader Signed off ON M H 61 WS	Date	20/3
Safety Audit Signed off	Date	10.04.20
Safety Audit Signed off	Date	11/4/24

20/3/24

0.04.2024
APPENDIX A

List of Drawings Examined

The following drawings have been provided electronically in PDF format by Hayes Higgins Partnership and are appended.

Drawing number	Rev	Drawing title
3587-EML-XX-02-DR-A-0003		Proposed Site Layout
01		Proposed Levels Proposed Layout 01

REV DATE DESCRIPTION DWG BY APPR. BY				
STAGE 1 – PLANNING				
CLIENT LOUTH COUNTY COUNCIL				
BALLYMAKENNY, LOUTH VILLAGE				
DRAWING NAME				
PROPOSED LEVELS				
01				
PROJECT No.				
23D047				
DRAWING No. REVISION				
SCALE DRAWN DATE				
AS SHOWN 8.12.23				
CAD DRAWN BY CHECKED BY APPROVED BY				
R.M. L.M. D.H.				
HAYES HIGGINS				
PARTNERSHIP				
The Glass House, 11 Coke Lane Smithfield Dublin 7 Tel: 01 6612321				
E-mail: admin@hayeshiggins.ie				
Gus House Luffe, Kilkeniny, Tel: (1):01 //12/11	1			

Appendix I – Traffic Impact Assessment

23185-02-002

PROPOSED RESIDENTIAL DEVELOPMENT AT BALLYMAKENNY, DROGHEDA, Co. LOUTH

Traffic & Impact Assessment

for

Louth County Council

April 2024

7, Ormonde Road Kilkenny. R95 N4FE

Tel: 056 7795800 info@roadplan.ie www.roadplan.ie

DOCUMENT CONTROL SHEET

Project Title	Proposed Residential Development at Ballymakenny, Drogheda, Co. Louth
Project No.	23185-02
Client	Louth County Council
Document Title	Traffic Impact Assessment
Document No.	23185-02-002

Status	Author(s)	Reviewed By	Approved By	Issue Date
Draft 1	RF	DD	GF	19/02/2024
Final	RF	DD	GF	11/4/2024

TABLE OF CONTENTS

1.	INTRO		.4
	1.1.	INTRODUCTION	4
	1.2.	OBJECTIVES	4
	1.3.	STUDY METHODOLOGY	4
	1.4.	STRUCTURE OF REPORT	4
2.	PROPC	SED DEVELOPMENT	.6
	2.1.	SITE LOCATION	6
	2.2.	DESCRIPTION OF PROPOSED DEVELOPMENT	6
3.	EXISTI	NG AND PROPOSED TRAFFIC CONDITIONS	.7
	3.1.	EXISTING TRAFFIC FLOWS	7
	3.2.	EXISTING ROAD NETWORK	7
4.	TRAFF	IC GENERATION AND TRIP DISTRIBUTION	.8
	4.1.	DEVELOPMENT TRIP GENERATION	8
	4.1.1	Residential	8
	4.2.	TRIP DISTRIBUTION	8
	4.3.	FUTURE YEAR TRAFFIC GROWTH	9
5.	OPERA	TIONAL ASSESSMENTS	10
	5.1.	INTRODUCTION	.10
	5.2.	BALLYMAKENNY RD / DEVELOPMENT ACCESS PRIORITY JN	.10
6.	PARKI	۱G۲	12
	6.1.	CAR PARKING PROVISION	.12
	6.2.	CAR PARKING REQUIREMENTS FROM DEVELOPMENT PLAN	.12
	6.3.	BICYCLE PARKING REQUIREMENTS FROM DEVELOPMENT PLAN	.12
7.	CONCL	USIONS	13
AP	PENDIC	ΞS	14
AP	PENDIX	A – DRAWINGS	
AP	PENDIX	B – TRAFFIC COUNTS	
AP	PENDIX	C – TRAFFIC FLOW SHEETS	
AP	PENDIX	D – TRICS INFORMATION	
AP	PENDIX	E – PICADY RESULTS	

1. INTRODUCTION

1.1. INTRODUCTION

Roadplan Consulting was commissioned by Hayes Higgins Partnership on behalf of Louth County Council to prepare a Traffic Impact Assessment for a proposed residential development at Ballymakenny, Drogheda, Co. Louth.

In preparing this report, Roadplan Consulting has made reference to:

- The Louth County Development Plan 2021 2027;
- The Institute of Highways and Transportation Guidelines on the Preparation of Traffic Impact Assessments;
- The TII Transport Assessment Guidelines;
- The TII National Traffic Model.

1.2. OBJECTIVES

The objective of this report is to examine the traffic implications of the proposed residential development in terms of how it can integrate with existing traffic in the area. The report will determine and quantify the extent of additional trips generated by the residential development and the impact of such trips on the operational performance of the local road network and junctions, in particular the proposed Ballymakenny Rd / Development Access priority junction.

1.3. STUDY METHODOLOGY

The methodology adopted for this report is summarised as follows:

- Traffic counts were undertaken by IDASO on Tuesday 9th of January 2024 during a 12-hour period (07:00 to 19:00). Count information was obtained at the existing Ballymakenny Rd / Castle Manor priority junction (located adjacent to the proposed development access).
- Existing Traffic Assessment A spreadsheet model was created which contains the base year DO-NOTHING traffic count data described above. The traffic count data was used to develop an PICADY model of the proposed Ballymakenny Rd / Development Access priority junction.
- Future Year Assessment The estimated future year traffic volumes on the study area road network, as a result of the increase in background traffic and development related traffic was used to assess the future operational performance of the junction at the year of opening of the proposed development, 5 years after opening and 15 years after opening.

1.4. STRUCTURE OF REPORT

Following this introduction, the report is set out as follows:

- Chapter 2 provides details of the proposed development;
- Chapter 3 provides an overview of the existing traffic conditions and the local road network, identifying any existing issues related to traffic flow or road infrastructure;
- Chapters 4 and 5 outline the analysis as described in the Study Methodology above. The analysis examines trip generation, distribution and resulting junction operational performance with the future development in place;

- Chapter 6 establishes the parking requirements for the development and sets out how these needs are provided for;
- Chapter 7 presents the conclusions of the report

2. PROPOSED DEVELOPMENT

2.1. SITE LOCATION

The proposed residential development is located at Ballymakenny Road, Drogheda, Co. Louth. The proposed development is bounded by residential estates to the south and west, industrial units to the north and the Ballymakenny Rd to the east as shown on *Figure 2.1 'Site Location Map'*.

Figure 2.1 – Site Location Map

2.2. DESCRIPTION OF PROPOSED DEVELOPMENT

The development will comprise of the construction of 97 no. residential units and all ancillary development works including access roads, footpaths, parking, drainage, landscaping and amenity areas.

A layout of the proposed residential development, its access point and its internal access road is shown on the site plan which is contained in *Appendix A – Drawings*.

3. EXISTING AND PROPOSED TRAFFIC CONDITIONS

3.1. EXISTING TRAFFIC FLOWS

A traffic count was undertaken by IDASO on Tuesday 09^{th} of January 2024 during a 12-hour period (07:00 to 19:00). The count data is provided in *Appendix B – Traffic Counts*. Count information was obtained at the following junction:

• Ballymakenny Rd / Castle Manor priority junction

The traffic flows during the AM and PM peak hours were abstracted from the surveyed data and are shown in the following tables.

Ballymakenny Rd / Castle Manor Priority Junction

From / To	Ballymakenny Rd (south)	Castle Manor	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	11	425	436
Castle Manor	39	0	9	48
Ballymakenny Rd (north)	586	3	0	589
Totals	625	14	434	1073

2024 AM Peak – Base Flows

2024 PM Peak – Base Flows

From / To	Ballymakenny Rd (south)	Castle Manor	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	37	212	249
Castle Manor	21	0	4	25
Ballymakenny Rd (north)	210	4	0	214
Totals	231	41	216	488

3.2. EXISTING ROAD NETWORK

Access to the proposed residential development will be via a proposed access onto the Ballymakenny Road. The Ballymakenny Rd has the following characteristics at the proposed access to the residential development:

- It is a single carriageway road that is approximately 9m wide.
- A right turn lane is provided along the Ballymakenny Rd.
- There is a 2m wide footpath provided on the western side of the Ballymakenny Rd and a combined footpath / cyclepath provided on the eastern side of the Ballymakenny Rd.
- Street lighting is provided along the Ballymakenny Rd.

4. TRAFFIC GENERATION AND TRIP DISTRIBUTION

4.1. DEVELOPMENT TRIP GENERATION

The TRICS database has been used to predict the trip generation to and from the proposed residential development for the AM and PM peak periods. Full details of the TRICS information used for the assessments are provided in Appendix D - TRICS information.

4.1.1 Residential

The category of "Residential – Local Authority Houses" has been assessed as the most appropriate development type category for this part of the development and the trip rates for the AM and PM peak periods are shown below.

Trip Rates per No. of Units

	Trip rate to development	Trip rate from development
AM Peak	0.112	0.246
PM Peak	0.246	0.164

For the proposed 97 residential units, this would give the following trips to and from the proposed development.

Trip Generation – 97 Dwellings

AM Peak - Development Trip Distribution (Percentage)

	Trip rate to development	Trip rate from development
AM Peak	11	24
PM Peak	24	16

4.2. TRIP DISTRIBUTION

Vehicular trips to and from the proposed residential development will arrive / depart via the proposed Ballymakenny Rd / Development Access priority junction. It is assumed that the distribution of development traffic at the proposed access will follow the same pattern as the distribution of existing traffic at the existing Ballymakenny Rd / Castle Manor priority junction.

The following diagram shows the proposed traffic distribution percentage for the AM and PM peak at the proposed Ballymakenny Rd / Development Access priority.

Figure 4.1 – Existing traffic distribution percentage

PM Peak - Development Trip Distribution (Percentage)

Using the proposed directional splits shown above and the trips generated by the proposed residential development outlined in 4.1, the following diagrams show the turning movements of predicted development traffic at the proposed Ballymakenny Rd / Development Access priority junction during the AM and PM peak hours.

Figure 4.2 – Proposed traffic distribution percentage

4.3. FUTURE YEAR TRAFFIC GROWTH

The TII issues a range of forecasts: low growth, medium growth and high growth. Due to the location and nature of the proposed residential development, and given the recent economic expansion, we have used medium growth factors in our assessment.

The zone in which the site is located is number 171 in the TII National Traffic Model. The medium growth factors for each assessment year are as follows.

Zone	2024 Base Year	2026 Development Completion	2031 5 years after dev. completion	2041 15 years after dev. completion
171	1.00	3.26%	11.88%	14.08%

5. OPERATIONAL ASSESSMENTS

5.1. INTRODUCTION

Traffic generated by the proposed development will have some effect on the local road network surrounding the site. The following junction was assessed:

• Ballymakenny Rd / Development Access priority junction

5.2. BALLYMAKENNY RD / DEVELOPMENT ACCESS PRIORITY JN

A capacity assessment has been undertaken using the computer program PICADY for the AM and PM peak hours.

The following table summarises the effects that the proposed development will have on this junction in 2026, 2031 and 2041 using the existing and predicted traffic flows shown in Appendix C – Traffic Flow Sheets. Full PICADY printouts are provided *in Appendix E* – *PICADY Results.*

The parameters shown in the tables are defined as follows:

Ratio of Flow to Capacity (RFC) is a factor indicating the flow on a junction arm relative to its capacity. An RFC of 1.0 means the junction has reached its ultimate capacity and an RFC of 0.85 means that the junction has reached its practical capacity.

Avg. Queue is the average number of vehicles queued over the time period on the junction approach.

Queue delay is the average number of seconds delay to each vehicle in the time period.

Total Delay is the total number of vehicle hours of delay to all vehicles at the junction over the time period

Year	Period	Approach	Predicted RFC value	Avg Queue (vehicles)	Queue delay (secs./veh.)
		Ballymakenny Rd (south)	-	-	-
0000	AM Peak	Development Access	0.10	0	15
2026 With		Ballymakenny Rd (north)	0.04	0	5
Development		Ballymakenny Rd (south)	-	-	-
Bovolopinon	PM Peak	Development Access	0.05	0	10
		Ballymakenny Rd (north)	0.06	0	6
	AM Peak	Ballymakenny Rd (south)	-	-	-
0004		Development Access	0.10	0	16
2031 With		Ballymakenny Rd (north)	0.04	0	4
Development		Ballymakenny Rd (south)	-	-	-
Bevelopment	PM Peak	Development Access	0.05	0	10
		Ballymakenny Rd (north)	0.06	0	6
		Ballymakenny Rd (south)	-	-	-
0044	AM Peak	Development Access	0.11	0	16
2041 With		Ballymakenny Rd (north)	0.05	0	4
		Ballymakenny Rd (south)	-	-	-
Bevelopment	PM Peak	Development Access	0.05	0	10
		Ballymakenny Rd (north)	0.06	0	6

The summary predictions shown in the table above indicate that in 2026, 2031 and 2041 with an increase in background flows and the proposed development operational the

proposed Ballymakenny Rd / Development Access priority junction will operate within capacity with no queues and minimal delays during the AM and PM peak period.

6. PARKING

6.1. CAR PARKING PROVISION

A total of 97 car parking spaces will be provided to cater for the proposed residential development as shown on the architect's drawing contained in Appendix A – Drawings.

6.2. CAR PARKING REQUIREMENTS FROM DEVELOPMENT PLAN

The '*Louth County Development Plan 2021-2027*' lists standard provision for car parking and the table below sets out those requirements in relation to the residential development.

Parking Standards for Residential Development					
Land-use	and-use Requirements Quantity Parking				
Residential	1 car space per unit	97 Dwellings	97 spaces		
	97 spaces				

 Table 6.1 – Car parking requirements from the Louth County Development Plan

The Louth County Development Plan indicates that the number of parking spaces required for the proposed residential development is 97 parking spaces.

It is proposed to provide a total of 97 car parking spaces which will cater for the proposed residential development.

6.3. BICYCLE PARKING REQUIREMENTS FROM DEVELOPMENT PLAN

The 'Louth County Development Plan 2021-2027' lists standard provision for bicycle parking and the table below sets out those requirements in relation to the residential development.

Parking Standa	Parking Standards for Residential Development											
Land-use	Requirements	Quantity	Parking									
Residential	1 bicycle space per unit +	97 Dwellings	97 spaces +									
	1 space per 5 units for visitors	5	19 spaces									
		Total	116 spaces									

Table 6.2 – Bicycle parking requirements from the Louth County Development Plan

The Louth County Development Plan indicates that the number of bicycle parking spaces required for the proposed residential development is 116 bicycle parking spaces.

It is proposed to provide a total of 116 bicycle parking spaces which will cater for the proposed residential development.

7. CONCLUSIONS

The main conclusions of this study are summarised as follows:

- Capacity analysis of the proposed Ballymakenny Rd / Development Access priority junction indicates that in 2026, 2031 and 2041 with an increase in background flows and the proposed residential development operational the proposed Ballymakenny Rd / Development Access priority junction will operate within capacity with no queues and minimal delays during the AM and PM peak period.
- The development provides adequate car parking spaces and bicycle space as setout in Chapter 6 above.
- Facilities for pedestrians are included in the internal layout.

APPENDICES

APPENDIX A – DRAWINGS

APPENDIX B – TRAFFIC COUNTS

IDASO

 Survey Name:
 001 (24) 23707 - Co. Louth

 Site:
 Site 1.1

 Location:
 Ballymakenny Road/Castle Manor

 Date:
 Tue 09-Jan-2024

Google		stron Lodge	Map d	lata (52024 A => A				; ;					A => E						}			A => 0				
TIME	P/C	M/C	CAR	LGV	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGV	OGV1	OGV2	PSV	тот	PCU	P/C	м/с	CAR	LGV	OGV1	OGV2	PSV	тот рси
07:00	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	18	4	1	0	1	24 25.5
07:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	3	0	17	10	1	0	2	33 33.1
07:30	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	1	24	9	2	0	0	36 36.4
07:45	0	0	0	0	0	0	1	1	2	0	0	2	0	0	0	0	2	2	0	0	44	6	1	0	3	54 57.5
н/тот	0	0	0	0	0	0	1	1	2	0	0	8	0	0	0	0	8	8	3	1	103	29	5	0	6	147 152.5
08:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	2	0	130	5	0	1	5	143 147.7
08:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	10	0	90	3	0	1	2	106 101.3
08:30	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	1	6	7	6	0	101	5	1	0	3	116 114.7
08:45	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	з	3	0	0	54	2	3	0	1	60 62.5
н/тот	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	1	11	12	18	0	375	15	4	2	11	425 426.2
09:00	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	25	1	1	0	1	28 29.5
09:15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	20	3	1	0	0	24 24.5
09:30	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	6	6	0	0	22	4	3	1	0	30 32.8
09:45	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	3	3	0	0	29	5	1	1	1	37 39.8
н/тот	0	0	0	0	0	0	0	0	0	0	0	12	2	0	0	0	14	14	0	0	96	13	6	2	2	119 126.6
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	4	2	0	1	27 29
10:15	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5	0	0	25	5	2	1	0	33 35.3
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	4	1	0	1	27 28.5
10:45	0	0	0	0	0	0	1	1	2	0	0	3	1	0	0	0	4	4	0	0	29	6	1	0	0	36 36.5
н/тот	0	0	0	0	0	0	1	1	2	0	0	8	1	0	0	0	9	9	0	0	95	19	6	1	2	123 129.3
11:00	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	15	4	0	0	1	20 21
11:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	19	5	0	0	0	24 24
11:30	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	з	3	0	0	33	2	2	1	0	38 40.3
11:45	0	0	0	0	0	0	0	0	0	0	0	3	1	0	Ö	0	4	4	0	0	17	1	2	Ō	0	20 21
н/тот	0	0	0	0	0	0	0	0	0	0	0	9	1	0	0	0	10	10	0	0	84	12	4	1	1	102 106.3
12:00	0	0	0	0	0	0	0	0	0	1	0	8	0	0	0	0	9	8.2	0	0	30	3	1	0	0	34 34.5
12:15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	29	4	1	1	1	36 38.8
12:30	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	20	6	3	1	0	30 32.8
12:45	0	0	0	0	0	0	0	0	0	1	0	6	0	0	0	0	7	6.2	2	0	29	4	2	0	1	38 38.4
н/тот	0	0	0	0	0	0	0	0	0	2	0	20	0	0	0	0	22	20.4	2	0	108	17	7	2	2	138 144.5
13:00	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	6	6	0	0	52	6	3	1	0	62 64.8
13:15	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	41	5	1	0	1	48 49.5
13:30	0	0	0	0	0	0	0	0	0	1	0	3	0	0	0	0	4	3.2	0	0	43	6	0	1	0	50 51.3
13:45	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0	30	7	0	1	2	40 43.3
н/тот	0	0	0	0	0	0	0	0	0	1	0	18	1	0	0	0	20	19.2	0	0	166	24	4	3	3	200 208.9
14:00	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7	0	0	53	4	1	1	1	60 62.8
14:15	0	0	1	0	0	0	1	2	3	0	0	4	0	0	0	0	4	4	2	0	46	3	1	0	0	52 50.9
14:30	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	1	0	50	4	2	1	1	59 61.5
14:45	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	9	9	2	0	42	2	0	0	3	49 50.4
н/тот	0	0	1		0	0	1	2	3	0		26	0		0	0	26	26	5	0	191	13	4	2	5	220 225.6
15:00	0	0	0	0	0	0	0	0	0	1	0	7	1	0	0	0	9	8.2	0	0	60	3	2	0	1	66 68
15:15	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10	0	0	44	2	0	0	2	48 50
15:30	0	0	0	0	0	0	0	0	0	0	0	8	1	0	0	0	9	9	0	0	41	4	1	0	0	46 46.5
15:45			0		0			0	0	2		4	2	0	0		8	6.4	1		38		1	0	1	50 50.7
н/тот	0	⁰	0	0	⁰	0	0	0	0	3	0	29	4	0	0	0	36	33.6	1	0	183	18	4	0	4	210 215.2
16:00	0	0	0	0	0	0	0	0	0	0	0	8	1	0	0	0	9	9	0	0	45	6	1	0	1	53 54.5
16:15	0	0	0	0	0	0	0	0	0	0	0	11	1	0	0	0	12	12	0	0	44	7	0	0	1	52 53
16:30	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7	0	0	43	7	1	0	0	51 51.5
16:45	0			0 	••••••	0			0	1		10				0	11	10.2	0		42	12	1		1	56 57.5
н/тот								0	0	1		36	2			0	39	38.2	0		174	32	3		3	212 216.5
17:00	0	0	U	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7	1	0	47	5	0	0	0	53 52.2
1/:15	0	0	0	0	0	0	0	0	0	0	0	10	1	0	0	0	11	11	0	0	41	6	0	0	1	48 49
17:30	0	0	0	0	0	0	0	0	0	0	0	9	1	0	0	0	10	10	0	1	49	1	0	0	0	51 50.4
17:45			0			0		0	0	1	•••••	9	⁰	0	⁰		10	9.2	0		32	3		0	1	36 37
н/тот								0	0	1		35	2	0			38	37.2	1	1	169	15	0		2	188 188.6
18:00	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	13	13	3	0	38	2	0	0	0	43 40.6
18:15	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10	0	0	29	0	0	0	1	30 31
18:30	0	0	0	0	0	0	0	0	0	0	0	8	1	0	0	0	9	9	0	0	20	2	0	0	0	22 22
18:45								0	0	0			1				6	6	0	0 	40	<u>-</u>			0	43 43
н/тот	<u>-</u>	0	0	•••••	0	0	0	0	0	0	•••••	36	2	0		0	38	38	3		127	7	0	0	1	1.38 136.6
12 TOT	0	0	1	0	0	0	3	4	7	8	0	247	15	0	0	1	271	265.6	33	2	1871	214	47	13	42	2222 2277

ş		•••••	B => /	A			;····;				•••••	B => B	• • • • •					;····			B => (;····;	
P/C	M/C	CAR	LGV	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGV	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGV	OGV1	OGV2	PSV	тот	PCU
0	0	6	1	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	3	1	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
	0	10	0	0	0	0	10	10	0	0	0	0		0	0	0	0	0	⁰	1	0		0	0	1	1
		21					23	23													1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
0	0	9	0	0	0	0	9	9	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	2	2 3
1	0	9	0	0	0	1	11	11.2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
1	0	6	0	0	ō	0	7	6.2	0	0	0	0	0	0	0	0	0	1	ō	1	1	0	0	0	3	2.2
3	0	35	0	0	0	1	39	37.6	0	0	0	0	0	0	0	0	0	1	0	7	1	0	0	0	9	8.2
1	0	7	0	0	0	0	8	7.2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		3					3	3	0							0	0	0			2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			3	3
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			3	3	0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>^</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	····		0	
0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	o	0	0	0	0	0	0	o	0	0	0	2	0	0	0	0	2	2
0	0	9	0	0	0	0	9	9	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
		4					4	4	0							0	0	0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0	
	·····	4				0	4	4	0						0	0	0	0		·			·····	0	0	0
0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	3	1	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
0	0	3	1	0	0	0	4	4	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
0	0	14	2	0	0	0	16	16	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	2	2
0	0	8	1	0	0	0	9	9	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
1	0	5	1	0	0	0	7	6.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	4	1	0	0	0	6	5.2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
		5				0	5	5	0				0		0	0	0	0		1	0			0	1	1
		4	······		·····		4	25.4 4	0							0	0	0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0		-
0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	o	0	0	0	1	0	0	0	0	1	1
0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
0	0	21	0	0	0	0	21	21	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	8	1	0	0	0	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	13	0	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0	0	7	1	0	0	0	8	8
		26					1	1	0							0	0	0		1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1	1
		3			0	0	3	3	0	₀			·····		0	0	0	0	····o	0			····.	0	0	0
0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	ō	1	1	0	0	0	2	2
0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0	0
0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
0	0	18	0	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	4	4
0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	8	1	0	0	0	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	6	1	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
		0 26				0 n	0 28	28	0	0	0				0	0	0	0		1	0 0		n	0	1	,
		6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			6	6				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0	0	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1	
0	0	4	0	0	ō	0	4	4	0	0	0	0	0	o	0	0	0	0	0	1	0	0	0	0	1	1
0	0	7	1	0	0	0	8	8	0	0	0	0	0	0	0	о	0	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	о	0	0	0	0	0	0	0	0	0	0
0	0	20	1	0	0	0	21	21	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
6	0	245	11	0	0	1	263	259.2	0	0	0	0	0	0	0	0	0	1	0	36	7	0	0	0	44	43.2

3			C => /								•••••	C => B			•••••	}		3			C => (	c				33
P/C	M/C	CAR	LGV	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGV	0GV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGV	0GV1	OGV2	PSV	тот	PCU
0	0	14	1	0	0	0	15	15	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	22	3	1	0	0	26	26.5	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	o	0
0	0	34	3	0	0	1	38	39	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0
1	0	32	1	1	1	0	36	37	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	102	8	2	1	1	115	117.5	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	98	5	2	0	5	110	116	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	173	11	0	0	2	187	188.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	158	8	2	1	1	171	173.5	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2	0	111	3	1	Ö	1	118	117.9	0	0	1	0	0	0	0	1	1	0	Ö	0	0	0	Ö	0	0	0
4	0	540	27	5	1	9	586	595.6	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	45	4	1	0	0	50	50.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	35	1	5	0	0	41	43.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	31	3	2	0	1	37	39	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	23	5	1	0	1	30	31.5	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
0	0	134	13	9	0	2	158	164.5	0	0	1	0	0	0	0	1	1	0	0		0	0	0	0	0	0
0	0	28	6	1	1	1	37	39.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	20	4	1	0	1	26	27.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	28	3	2	1	0	34	36.3	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
		2/	···· 2			0	30	29.2	0								0					0		0	0	•
		103	- 15	<u>4</u>			127	132.8	0	~~ <u>~</u> ~~									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
1	0	25	2		1	-	دد در	33.7	0	0	1	0	0	0		-	1		0	0	0	0	0	0	0	
	0	20	2	-	-		41	24.0		0	0	0	0	0			ő		0	0	0	0	0	0	ő	ů
0	0	36	1	1	0	0	38	38.5	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	
	·····	118		~ų			135	138	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				····					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			····	····	0	0	- -
		74	1	····;		0	27	28	0		·			0	0		1	0		0		0	····	0	0	0
0	0	20	5	0	0	1	26	27	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
1	0	19	2	2	0	1	25	26.2	0	0	0	2	0	0	0	2	2	o	0	0	0	0	0	0	o	0
0	0	26	6	1	0	1	34	35.5	0	0	0	0	0	0	0	o	o	0	0	0	0	0	0	0	o	0
1	0	89	14	5	0	3	112	116.7	0	0	3	2	0	0	0	5	5	0	0	0	0	0	0	0	0	0
0	0	30	7	2	1	0	40	42.3	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	57	2	2	0	1	63	64.2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	32	2	1	2	1	38	42.1	0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	30	2	0	1	1	34	36.3	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	149	13	5	4	3	175	184.9	0	0	3	2	0	0	0	5	5	0	0	0	0	0	0	0	0	0
1	0	29	3	0	1	0	34	34.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	100	6	1	0	2	116	112.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	29	4	1	0	0	34	34.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	16	3	1	1	0	21	22.8	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
8	0	174	16	3	2	2	205	204.7	0	0	1	0	0	0	0	1	1	0	0		0	0	0	0	0	0
0	0	42	3	1	0	1	47	48.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	33	4	0	0	0	37	37	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2	0	90	6	0	0	6	104	108.4	0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0
		37	4				42	41.2	0						0	1	1	0						0	0	0
		202	1/	1			230	235.1	0						0	4	4	0		0				0	0	•
	0	43	10		-		50	51.5		0	•		0	0		ŕ.	÷.		0	0	0	0	0	0		ů
1	1	39	6	3	0	2	52	54.1	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	41	9	1	0	0	51	51.5	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
		164	29	 5	1	3	206	209.8	0		4				0	6	6	0						0	0	
2	0	41	8	2	0	1	54	54.4	0	0	0	0	0	0	0	0	0	o	0	 0	0	0	0	0	0	0
2	0	28	6	0	0	0	36	34.4	0	0	2	0	0	0	0	2	2	o	0	0	0	0	0	0	o	0
0	0	22	1	0	0	1	24	25	0	0	0	0	0	0	0	0	0	о	0	0	0	0	0	0	0	0
0	0	41	1	0	0	0	42	42	0	0	0	0	0	0	0	o	0	o	0	0	0	0	0	0	0	0
4	0	132	16	2	0	2	156	155.8	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	22	3	0	0	1	26	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	26	2	0	0	0	28	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	26	3	0	0	1	30	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	27	3	0	0	0	30	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	101	11	0	0	2	114	116	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27	1	2008	190	44	12	37	2319	2371	0	0	25	7	0	0	0	32	32	0	0	0	0	0	0	0	0	0

APPENDIX C – TRAFFIC FLOW SHEETS

#### Ballymakenny Rd / Proposed Access Priority Junction - AM Peak Hour

#### 2024 AM Peak - Base Flows

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	434	434
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	586	0	0	586
Totals	586	0	434	1020

#### AM Peak - Development flows

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	1	0	1
Proposed Access	19	0	5	24
Ballymakenny Rd (north)	0	10	0	10
Totals	19	11	5	35

#### 2026 AM Peak - No Development (Existing + 3.26%)

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	448	448
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	605	0	0	605
Totals	605	0	448	1053

#### 2026 AM Peak - With Development

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	1	448	449
Proposed Access	19	0	5	24
Ballymakenny Rd (north)	605	10	0	615
Totals	624	11	453	1088

#### 2031 AM Peak - No Development (Existing + 11.88%)

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	486	486
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	656	0	0	656
Totals	656	0	486	1141

#### 2031 AM Peak - With Development

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	1	486	487
Proposed Access	19	0	5	24
Ballymakenny Rd (north)	656	10	0	666
Totals	675	11	491	1176

#### 2041 AM Peak - No Development (Existing + 14.08%)

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	495	495
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	669	0	0	669
Totals	669	0	495	1164

#### 2041 AM Peak - With Development

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	1	495	496
Proposed Access	19	0	5	24
Ballymakenny Rd (north)	669	10	0	679
Totals	688	11	500	1199

#### Ballymakenny Rd / Proposed Access Priority Junction - PM Peak Hour

#### 2024 PM Peak - Base Flows

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	216	216
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	210	0	0	210
Totals	210	0	216	426

#### PM Peak - Development flows

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	2	0	2
Proposed Access	14	0	2	16
Ballymakenny Rd (north)	0	22	0	22
Totals	14	24	2	40

#### 2026 PM Peak - No Development (Existing + 3.26%)

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	223	223
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	217	0	0	217
Totals	217	0	223	440

#### 2026 PM Peak - With Development

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	2	223	225
Proposed Access	14	0	2	16
Ballymakenny Rd (north)	217	22	0	239
Totals	231	24	225	480

#### 2031 PM Peak - No Development (Existing + 11.88%)

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	242	242
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	235	0	0	235
Totals	235	0	242	477

#### 2031 PM Peak - With Development

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	2	242	244
Proposed Access	14	0	2	16
Ballymakenny Rd (north)	235	22	0	257
Totals	249	24	244	517

#### 2041 PM Peak - No Development (Existing + 14.08%)

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	0	246	246
Proposed Access	0	0	0	0
Ballymakenny Rd (north)	240	0	0	240
Totals	240	0	246	486

#### 2041 PM Peak - With Development

From / To	Ballymakenny Rd (south)	Proposed Access	Ballymakenny Rd (north)	Totals
Ballymakenny Rd (south)	0	2	246	248
Proposed Access	14	0	2	16
Ballymakenny Rd (north)	240	22	0	262
Totals	254	24	248	526

APPENDIX D – TRICS INFORMATION

TRICS 7.10.4	290124 B22.021982437	Database right of	<b>TRICS</b> Consortium Ltd, 2024. All r	rights reserved Tuesday	06/02/24
Social Housir	ng				Page 1
FREE TRIAL	NOT FOR COMMERCIAL US	SE FREE TRIAL		Licence I	No: 619801

Calculation Reference: AUDIT-619801-240206-0204 TRIP RATE CALCULATION SELECTION PARAMETERS:

Land Use : 03 - RESIDENTIAL Category : B - AFFORDABLE/LOCAL AUTHORITY HOUSES TOTAL VEHICLES

Selected regions and areas: 13 MUNSTER

13	IVIUI	NSTER	
	ΤI	TIPPERARY	2 days
15	GRE	EATER DUBLIN	

DL DUBLIN 2 days

This section displays the number of survey days per TRICS® sub-region in the selected set

FREE TRIAL

Tuesday 06/02/24 Page 2

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter: Actual Range: Range Selected by User:	No of Dwellings 8 to 48 (units: ) 8 to 120 (units: )	
Parking Spaces Range:	All Surveys Included	
Parking Spaces per Dwellir	ng Range: All Surveys Includ	led
Bedrooms per Dwelling Ra	nge: All Surveys Includ	led
Percentage of dwellings pri	ivately owned: All Surv	veys Included
Public Transport Provision: Selection by:		Include all surveys
Date Range: 01/01	/15 to 20/11/17	
This data displays the rang included in the trip rate ca	ge of survey dates selected. Aculation.	Only surveys that were conducted within this date range are
<u>Selected survey days:</u> Monday Tuesday Friday	2 c 1 c 1 c	tays tays tays
This data displays the nun	nber of selected surveys by c	day of the week.
<u>Selected survey types:</u> Manual count Directional ATC Count	4 c 0 c	tays tays
This data displays the nun up to the overall number of are undertaking using made	nber of manual classified sur of surveys in the selected sec chines.	veys and the number of unclassified ATC surveys, the total adding t. Manual surveys are undertaken using staff, whilst ATC surveys
<u>Selected Locations:</u> Suburban Area (PPS6 Out	of Centre)	3
Neighbourhood Centre (PP	S6 Local Centre)	1
This data displays the nun consist of Free Standing, E Not Known.	nber of surveys per main loc. Edge of Town, Suburban Area	ation category within the selected set. The main location categories a, Neighbourhood Centre, Edge of Town Centre, Town Centre and
Selected Location Sub Cat	egories:	

**Residential Zone** 

4

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Inclusion of Servicing Vehicles Counts: Servicing vehicles Included X days - Selected Servicing vehicles Excluded 4 days - Selected

Secondary Filtering selection:

<u>*Use Class:*</u> C3

4 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order (England) 2020 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range: All Surveys Included

Secondary Filtering selection (Cont.):

Population within 1 mile:	
1,001 to 5,000	1 days
5,001 to 10,000	2 days
15,001 to 20,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:	
5,001 to 25,000	2 days
250,001 to 500,000	1 days
500,001 or More	1 days

This data displays the number of selected surveys within stated 5-mile radii of population.

<u>Car ownership within 5 miles:</u>	
0.6 to 1.0	3 days
1.1 to 1.5	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5-miles of selected survey sites.

<u>*Travel Plan:*</u> No

4 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

<u>PTAL Rating:</u> No PTAL Present

4 days

This data displays the number of selected surveys with PTAL Ratings.

Licence No: 619801

TRICS 7.10. Social Housi	4 290124 B22.021982437 Database rig ng	ght of TRICS Consortium	n Ltd, 2024. All rights reserved	Tuesday 06/02/24 Page 4
FREE TRIAL	NOT FOR COMMERCIAL USE FREE T	RIAL		Licence No: 619801
LIST	OF SITES relevant to selection parameter	ers		
1	DL-03-B-02 TERRACED HOU MARIGOLD ROAD DUBLIN DARNDALE	ISES	DUBLIN	
	Residential Zone Total No of Dwellings: Survey date: MONDAY	35 <i>19/10/15</i>	Survey Type: MANUAL	
2	DL-03-B-03 SEMI-DETACHE HOME PARK ROAD DUBLIN DRUMCONDRA Suburban Area (PPS6 Out of Centre)	D & TERRACED	DUBLIN	
3	Residential Zone Total No of Dwellings: <i>Survey date: TUESDAY</i> TI-03-B-01 MIXED HOUSES LIMERICK ROAD NENAGH	48 <i>22/11/16</i>	<i>Survey Type: MANUAL</i> TIPPERARY	
4	Suburban Area (PPS6 Out of Centre) Residential Zone Total No of Dwellings: <i>Survey date: FRIDAY</i> TI -03-B-02 STRADAVOHER THURLES	43 <i>27/05/16</i>	<i>Survey Type: MANUAL</i> TIPPERARY	
	Suburban Area (PPS6 Out of Centre) Residential Zone Total No of Dwellings: Survey date: MONDAY	8 20/11/17	Survey Type: MANUAL	

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

FREE TRIAL NOT FOR COMMERCIAL USE FREE TRIAL

Tuesday 06/02/24 Page 5 Licence No: 619801

#### TRIP RATE for Land Use 03 - RESIDENTIAL/B - AFFORDABLE/LOCAL AUTHORITY HOUSES TOTAL VEHICLES Calculation factor: 1 DWELLS BOLD print indicates peak (busiest) period

	ARRIVALS		DEPARTURES			TOTALS			
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	DWELLS	Rate	Days	DWELLS	Rate	Days	DWELLS	Rate
00:00 - 01:00							-		
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	4	34	0.075	4	34	0.157	4	34	0.232
08:00 - 09:00	4	34	0.112	4	34	0.246	4	34	0.358
09:00 - 10:00	4	34	0.157	4	34	0.231	4	34	0.388
10:00 - 11:00	4	34	0.209	4	34	0.157	4	34	0.366
11:00 - 12:00	4	34	0.194	4	34	0.224	4	34	0.418
12:00 - 13:00	4	34	0.254	4	34	0.149	4	34	0.403
13:00 - 14:00	4	34	0.142	4	34	0.224	4	34	0.366
14:00 - 15:00	4	34	0.239	4	34	0.194	4	34	0.433
15:00 - 16:00	4	34	0.284	4	34	0.254	4	34	0.538
16:00 - 17:00	4	34	0.246	4	34	0.164	4	34	0.410
17:00 - 18:00	4	34	0.388	4	34	0.269	4	34	0.657
18:00 - 19:00	4	34	0.246	4	34	0.209	4	34	0.455
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:			2.546			2.478			5.024

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

#### Parameter summary

Trip rate parameter range selected:	8 - 48 (units: )
Survey date date range:	01/01/15 - 20/11/17
Number of weekdays (Monday-Friday):	4
Number of Saturdays:	0
Number of Sundays:	0
Surveys automatically removed from selection:	0
Surveys manually removed from selection:	0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed. APPENDIX E – PICADY RESULTS



Junctions 9					
PICADY 9 - Priority Intersection Module					
Version: 9.5.0.6896 © Copyright TRL Limited, 2018					
For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 379777 software@trl.co.uk www.trlsoftware.co.uk					
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the					

Filename: Proposed Access.j9

Path: S:\Jobs\2023\23185 3 x SHD sites Louth RSA1 + TIA\23185-02 Ballymakenny\Reports\Working\PICADY Report generation date: 15/02/2024 11:39:15

»2026 with dev, AM
»2026 with dev, PM
»2031 with dev, AM
»2031 with dev, AM
»2041 with dev, AM
»2041 with dev, PM

#### Summary of junction performance

		AM				РМ		
	Queue (Veh)	Delay (s)	RFC	LOS	Queue (Veh)	Delay (s)	RFC	LOS
		2026 with dev						
Stream B-AC	0.1	14.73	0.10	В	0.0	10.08	0.05	В
Stream C-AB	0.1	4.54	0.04	А	0.1	5.80	0.06	А
			20	)31 w	ith dev			
Stream B-AC	0.1	15.93	0.10	С	0.1	10.30	0.05	В
Stream C-AB	0.1	4.42	0.04	А	0.1	5.75	0.06	А
	2041 with dev							
Stream B-AC	0.1	16.25	0.11	С	0.1	10.36	0.05	В
Stream C-AB	0.1	4.39	0.05	Α	0.1	5.73	0.06	А

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

#### File summary

#### **File Description**

Title	
Location	
Site number	
Date	15/02/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	ROADPLAN01\jbyrne
Description	



#### Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	S	-Min	perMin

### **Analysis Options**

Vehicle length	Calculate Queue	Calculate detailed queueing delay	Calculate residual	RFC	Average Delay	Queue threshold
(m)	Percentiles		capacity	Threshold	threshold (s)	(PCU)
5.75				0.85	36.00	20.00

### **Demand Set Summary**

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2026 with dev	AM	ONE HOUR	07:45	09:15	15	✓
D2	2026 with dev	PM	ONE HOUR	15:45	17:15	15	✓
D3	2031 with dev	AM	ONE HOUR	07:45	09:15	15	✓
D4	2031 with dev	PM	ONE HOUR	15:45	17:15	15	✓
D5	2041 with dev	AM	ONE HOUR	07:45	09:15	15	✓
D6	2041 with dev	PM	ONE HOUR	15:45	17:15	15	✓

### **Analysis Set Details**

ID	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A1	~	100.000	100.000



# 2026 with dev, AM

#### **Data Errors and Warnings**

No errors or warnings

### **Junction Network**

#### **Junctions**

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	T-Junction	Two-way		0.45	A

#### **Junction Network Options**

Driving side	Lighting		
Left	Normal/unknown		

### Arms

#### Arms

Arm	Name	Description	Arm type
Α	untitled		Major
в	untitled		Minor
С	untitled		Major

#### **Major Arm Geometry**

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right turn bay	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
С	6.00			100.0	~	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

#### **Minor Arm Geometry**

Arm Minor arm type		Lane width (m)	Visibility to left (m)	Visibility to right (m)	
в	One lane	3.25	20	20	

#### Slope / Intercept / Capacity

#### **Priority Intersection Slopes and Intercepts**

Junction	Stream	Intercept (Veh/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	506	0.092	0.233	0.147	0.333
1	B-C	652	0.100	0.253	-	-
1	C-B	632	0.245	0.245	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments. Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

### **Traffic Demand**

#### **Demand Set Details**

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2026 with dev	AM	ONE HOUR	07:45	09:15	15	~


Default vehicle mix	Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
✓	✓	✓	HV Percentages	2.00

### **Demand overview (Traffic)**

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
Α		ONE HOUR	✓	449	100.000
в		ONE HOUR	✓	24	100.000
С		ONE HOUR	✓	615	100.000

## **Origin-Destination Data**

### Demand (Veh/hr)

	_							
	То							
		Α	В	С				
_	Α	0	1	448				
From	в	19	0	5				
	С	605	10	0				

## Vehicle Mix

**Heavy Vehicle Percentages** 

	То							
		Α	в	c				
<b>F</b>	Α	10	10	10				
From	в	10	10	10				
	С	10	10	10				

## Results

### **Results Summary for whole modelled period**

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.10	14.73	0.1	В	22	33
C-AB	0.04	4.54	0.1	A	27	40
C-A					538	806
ΑB					1	1
A-C					411	617

### Main Results for each time segment

### 07:45 - 08:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	5	340	0.053	18	0.0	0.1	11.185	В
C-AB	17	4	810	0.021	17	0.0	0.0	4.538	А
C-A	446	111			446				
A-B	0.75	0.19			0.75				
A-C	337	84			337				



### 08:00 - 08:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	5	311	0.069	22	0.1	0.1	12.436	В
C-AB	24	6	861	0.028	24	0.0	0.0	4.300	А
C-A	528	132			528				
A-B	0.90	0.22			0.90				
A-C	403	101			403				

### 08:15 - 08:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	26	7	271	0.098	26	0.1	0.1	14.711	В
C-AB	38	10	935	0.041	38	0.0	0.1	4.014	А
C-A	639	160			639				
A-B	1	0.28			1				
A-C	493	123			493				

### 08:30 - 08:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	26	7	271	0.098	26	0.1	0.1	14.727	В
C-AB	38	10	935	0.041	38	0.1	0.1	4.016	А
C-A	639	160			639				
A-B	1	0.28			1				
A-C	493	123			493				

### 08:45 - 09:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	5	311	0.069	22	0.1	0.1	12.455	В
C-AB	25	6	862	0.028	25	0.1	0.0	4.303	А
C-A	528	132			528				
A-B	0.90	0.22			0.90				
A-C	403	101			403				

### 09:00 - 09:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	5	339	0.053	18	0.1	0.1	11.205	В
C-AB	17	4	810	0.021	17	0.0	0.0	4.541	A
C-A	446	111			446				
A-B	0.75	0.19			0.75				
A-C	337	84			337				



## 2026 with dev, PM

### **Data Errors and Warnings**

No errors or warnings

## **Junction Network**

### Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	T-Junction	Two-way		0.72	А

### **Junction Network Options**

Driving side	Lighting
Left	Normal/unknown

## **Traffic Demand**

### **Demand Set Details**

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D2	2026 with dev	PM	ONE HOUR	15:45	17:15	15	~

Default vehicle mix	Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
✓	✓	✓	HV Percentages	2.00

### **Demand overview (Traffic)**

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
Α		ONE HOUR	~	225	100.000
в		ONE HOUR	✓	16	100.000
С		ONE HOUR	✓	239	100.000

## **Origin-Destination Data**

### Demand (Veh/hr)

	То						
From		Α	В	c			
	Α	0	2	223			
	в	14	0	2			
	С	217	22	0			

## **Vehicle Mix**

### **Heavy Vehicle Percentages**

	То						
		Α	в	С			
-	Α	10	10	10			
From	в	10	10	10			
	С	10	10	10			



## Results

### **Results Summary for whole modelled period**

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.05	10.08	0.0	В	15	22
C-AB	0.06	5.80	0.1	А	29	44
C-A					190	285
A-B					2	3
A-C					205	307

### Main Results for each time segment

### 15:45 - 16:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	12	3	406	0.030	12	0.0	0.0	9.128	A
C-AB	22	6	643	0.035	22	0.0	0.0	5.794	А
C-A	158	39			158				
A-B	2	0.38			2				
A-C	168	42			168				

### 16:00 - 16:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	14	4	393	0.037	14	0.0	0.0	9.507	А
C-AB	28	7	657	0.043	28	0.0	0.1	5.722	А
C-A	187	47			187				
A-B	2	0.45			2				
A-C	200	50			200				

### 16:15 - 16:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	4	375	0.047	18	0.0	0.0	10.077	В
C-AB	38	9	678	0.055	37	0.1	0.1	5.624	А
C-A	226	56			226				
A-B	2	0.55			2				
A-C	246	61			246				

### 16:30 - 16:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	4	375	0.047	18	0.0	0.0	10.079	В
C-AB	38	9	678	0.055	38	0.1	0.1	5.624	A
C-A	226	56			226				
A-B	2	0.55			2				
A-C	246	61			246				



### 16:45 - 17:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	14	4	393	0.037	14	0.0	0.0	9.512	А
C-AB	28	7	657	0.043	28	0.1	0.1	5.725	А
C-A	187	47			187				
ΑB	2	0.45			2				
A-C	200	50			200				

### 17:00 - 17:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	12	3	406	0.030	12	0.0	0.0	9.138	А
C-AB	22	6	643	0.035	22	0.1	0.0	5.801	А
C-A	158	39			158				
A-B	2	0.38			2				
A-C	168	42			168				



## 2031 with dev, AM

### **Data Errors and Warnings**

No errors or warnings

## **Junction Network**

### Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	T-Junction	Two-way		0.45	A

### **Junction Network Options**

Driving side	Lighting
Left	Normal/unknown

## **Traffic Demand**

### **Demand Set Details**

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D3	2031 with dev	AM	ONE HOUR	07:45	09:15	15	~

Default vehicle mix	Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)	
✓	✓	✓	HV Percentages	2.00	

### **Demand overview (Traffic)**

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
Α		ONE HOUR	~	487	100.000
в		ONE HOUR	✓	24	100.000
С		ONE HOUR	✓	666	100.000

## **Origin-Destination Data**

### Demand (Veh/hr)

	То						
		A	в	c			
_	Α	0	1	486			
From	в	19	0	5			
	С	656	10	0			

## **Vehicle Mix**

### **Heavy Vehicle Percentages**

		То						
		Α	в	С				
-	Α	10	10	10				
From	в	10	10	10				
	С	10	10	10				



## Results

### **Results Summary for whole modelled period**

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	lax Queue (Veh) Max LOS		Total Junction Arrivals (Veh)
B-AC	0.10	15.93	0.1	С	22	33
C-AB	0.04	4.42	0.1	A	30	44
C-A					582	872
A-B					1	1
A-C					446	669

### Main Results for each time segment

### 07:45 - 08:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	5	327	0.055	18	0.0	0.1	11.624	В
C-AB	19	5	832	0.022	18	0.0	0.0	4.423	А
C-A	483	121			483				
A-B	0.75	0.19			0.75				
A-C	366	91			366				

### 08:00 - 08:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	5	296	0.073	21	0.1	0.1	13.101	В
C-AB	27	7	889	0.030	27	0.0	0.0	4.176	А
C-A	572	143			572				
A-B	0.90	0.22			0.90				
A-C	437	109			437				

### 08:15 - 08:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	26	7	252	0.105	26	0.1	0.1	15.904	С
C-AB	43	11	970	0.045	43	0.0	0.1	3.884	А
C-A	690	172			690				
A-B	1	0.28			1				
A-C	535	134			535				

### 08:30 - 08:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	26	7	252	0.105	26	0.1	0.1	15.926	С
C-AB	43	11	970	0.045	43	0.1	0.1	3.885	A
C-A	690	172			690				
A-B	1	0.28			1				
A-C	535	134			535				



### 08:45 - 09:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	5	296	0.073	22	0.1	0.1	13.126	В
C-AB	27	7	889	0.030	27	0.1	0.0	4.177	А
C-A	572	143			572				
ΑB	0.90	0.22			0.90				
A-C	437	109			437				

### 09:00 - 09:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	5	327	0.055	18	0.1	0.1	11.650	В
C-AB	19	5	832	0.022	19	0.0	0.0	4.424	А
C-A	483	121			483				
A-B	0.75	0.19			0.75				
A-C	366	91			366				



## 2031 with dev, PM

### **Data Errors and Warnings**

No errors or warnings

## **Junction Network**

### Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	T-Junction	Two-way		0.69	А

### **Junction Network Options**

Driving side	Lighting				
Left	Normal/unknown				

## **Traffic Demand**

### **Demand Set Details**

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D4	2031 with dev	PM	ONE HOUR	15:45	17:15	15	~

Default vehicle mix Vehicle mix varies over turn		Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)	
~	✓	✓	HV Percentages	2.00	

### **Demand overview (Traffic)**

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)	
Α		ONE HOUR	~	244	100.000	
в		ONE HOUR	✓	16	100.000	
С		ONE HOUR	✓	257	100.000	

## **Origin-Destination Data**

### Demand (Veh/hr)

	То						
		A	В	С			
-	Α	0	2	242			
From	в	14	0	2			
	С	235	22	0			

## **Vehicle Mix**

### **Heavy Vehicle Percentages**

	То						
		Α	В	С			
_	Α	10	10	10			
From	в	10	10	10			
	С	10	10	10			



## Results

### **Results Summary for whole modelled period**

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.05	10.30	0.1	В	15	22
C-AB	0.06	5.75	0.1	А	30	45
C-A					206	308
A-B					2	3
A-C					222	333

### Main Results for each time segment

### 15:45 - 16:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	12	3	401	0.030	12	0.0	0.0	9.251	А
C-AB	23	6	649	0.035	23	0.0	0.0	5.744	А
C-A	171	43			171				
A-B	2	0.38			2				
A-C	182	46			182				

### 16:00 - 16:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	14	4	387	0.037	14	0.0	0.0	9.668	А
C-AB	29	7	665	0.044	29	0.0	0.1	5.664	А
C-A	202	50			202				
A-B	2	0.45			2				
A-C	218	54			218				

### 16:15 - 16:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	4	367	0.048	18	0.0	0.0	10.300	В
C-AB	39	10	687	0.057	39	0.1	0.1	5.556	А
C-A	244	61			244				
A-B	2	0.55			2				
A-C	266	67			266				

### 16:30 - 16:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	4	367	0.048	18	0.0	0.1	10.302	В
C-AB	39	10	687	0.057	39	0.1	0.1	5.556	A
C-A	244	61			244				
A-B	2	0.55			2				
A-C	266	67			266				



### 16:45 - 17:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	14	4	387	0.037	14	0.1	0.0	9.673	А
C-AB	29	7	665	0.044	29	0.1	0.1	5.665	А
C-A	202	50			202				
ΑB	2	0.45			2				
A-C	218	54			218				

### 17:00 - 17:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	12	3	401	0.030	12	0.0	0.0	9.260	А
C-AB	23	6	649	0.035	23	0.1	0.0	5.748	А
C-A	171	43			171				
A-B	2	0.38			2				
A-C	182	46			182				



## 2041 with dev, AM

### **Data Errors and Warnings**

No errors or warnings

## **Junction Network**

### Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	T-Junction	Two-way		0.45	A

### **Junction Network Options**

Driving side	Lighting
Left	Normal/unknown

## **Traffic Demand**

### **Demand Set Details**

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D5	2041 with dev	AM	ONE HOUR	07:45	09:15	15	~

Default vehicle mix	Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
~	✓	✓	HV Percentages	2.00

### **Demand overview (Traffic)**

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
Α		ONE HOUR	✓	496	100.000
в		ONE HOUR	~	24	100.000
С		ONE HOUR	✓	679	100.000

## **Origin-Destination Data**

### Demand (Veh/hr)

	То				
From		Α	В	c	
	Α	0	1	495	
	в	19	0	5	
	С	669	10	0	

## **Vehicle Mix**

### **Heavy Vehicle Percentages**

	То			
		Α	в	С
-	Α	10	10	10
From	в	10	10	10
	С	10	10	10



## Results

### **Results Summary for whole modelled period**

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.11	16.25	0.1	С	22	33
C-AB	0.05	4.39	0.1	A	30	46
C-A					593	889
A-B					1	1
A-C					454	681

### Main Results for each time segment

### 07:45 - 08:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	5	324	0.056	18	0.0	0.1	11.738	В
C-AB	19	5	838	0.023	19	0.0	0.0	4.394	А
C-A	492	123			492				
A-B	0.75	0.19			0.75				
A-C	373	93			373				

### 08:00 - 08:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	5	293	0.074	21	0.1	0.1	13.276	В
C-AB	27	7	896	0.031	27	0.0	0.0	4.145	А
C-A	583	146			583				
A-B	0.90	0.22			0.90				
A-C	445	111			445				

### 08:15 - 08:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	26	7	248	0.107	26	0.1	0.1	16.228	С
C-AB	45	11	979	0.046	45	0.0	0.1	3.852	A
C-A	703	176			703				
A-B	1	0.28			1				
A-C	545	136			545				

### 08:30 - 08:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	26	7	248	0.107	26	0.1	0.1	16.251	С
C-AB	45	11	979	0.046	45	0.1	0.1	3.854	А
C-A	703	176			703				
A-B	1	0.28			1				
A-C	545	136			545				



### 08:45 - 09:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	5	293	0.074	22	0.1	0.1	13.302	В
C-AB	28	7	896	0.031	28	0.1	0.0	4.146	А
C-A	583	146			583				
ΑB	0.90	0.22			0.90				
A-C	445	111			445				

### 09:00 - 09:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	5	324	0.056	18	0.1	0.1	11.764	В
C-AB	19	5	838	0.023	19	0.0	0.0	4.395	А
C-A	492	123			492				
A-B	0.75	0.19			0.75				
A-C	373	93			373				



# 2041 with dev, PM

### **Data Errors and Warnings**

No errors or warnings

## **Junction Network**

### Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	untitled	T-Junction	Two-way		0.68	А

### **Junction Network Options**

Driving side	Lighting
Left	Normal/unknown

## **Traffic Demand**

### **Demand Set Details**

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2041 with dev	PM	ONE HOUR	15:45	17:15	15	~

Default vehicle mix	Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
~	✓	✓	HV Percentages	2.00

### **Demand overview (Traffic)**

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
Α		ONE HOUR	~	248	100.000
в		ONE HOUR	✓	16	100.000
С		ONE HOUR	✓	262	100.000

## **Origin-Destination Data**

### Demand (Veh/hr)

		То							
		Α	в	c					
_	Α	0	2	246					
From	в	14	0	2					
	С	240	22	0					

## **Vehicle Mix**

### **Heavy Vehicle Percentages**

		То							
		Α	в	С					
	Α	10	10	10					
From	в	10	10	10					
	С	10	10	10					



## Results

### **Results Summary for whole modelled period**

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.05	10.36	0.1	В	15	22
C-AB	0.06	5.73	0.1	А	31	46
C-A					210	315
A-B					2	3
A-C					226	339

### Main Results for each time segment

### 15:45 - 16:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	12	3	400	0.030	12	0.0	0.0	9.280	А
C-AB	23	6	651	0.035	23	0.0	0.0	5.728	А
C-A	174	44			174				
A-B	2	0.38			2				
A-C	185	46			185				

### 16:00 - 16:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	14	4	385	0.037	14	0.0	0.0	9.707	А
C-AB	29	7	667	0.044	29	0.0	0.1	5.643	А
C-A	206	52			206				
A-B	2	0.45			2				
A-C	221	55			221				

### 16:15 - 16:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	4	365	0.048	18	0.0	0.1	10.353	В
C-AB	39	10	690	0.057	39	0.1	0.1	5.535	А
C-A	249	62			249				
A-B	2	0.55			2				
A-C	271	68			271				

### 16:30 - 16:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	18	4	365	0.048	18	0.1	0.1	10.356	В
C-AB	39	10	690	0.057	39	0.1	0.1	5.537	A
C-A	249	62			249				
A-B	2	0.55			2				
A-C	271	68			271				



### 16:45 - 17:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	14	4	385	0.037	14	0.1	0.0	9.712	А
C-AB	29	7	667	0.044	29	0.1	0.1	5.646	А
C-A	206	52			206				
ΑB	2	0.45			2				
A-C	221	55			221				

### 17:00 - 17:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	12	3	400	0.030	12	0.0	0.0	9.289	А
C-AB	23	6	651	0.035	23	0.1	0.0	5.735	А
C-A	174	44			174				
A-B	2	0.38			2				
A-C	185	46			185				

## Appendix J – SUDS / Green Infrastructure Feasibility Checklist



## SUDS/Green Infrastructure feasibility checklist – 23D047 – February 2024

SuDS Measures	Measures to be used on this site	Rationale for selecting/not selecting measure
Source Control		
Swales	N	There is limited suitable space within the site for same.
Tree Pits	Y	Tree pits will be included in landscape design. Not included in the SuDs calculations, given the poor infiltration rate on site, but they will contribute.
Rainwater Butts	ТВС	Usage will be reviewed with architect and client.
Rainwater harvesting	ТВС	Will be reviewed with the architect and client to see if it is a viable option.
Soakaways	Ν	Not viable due to impermeable ground conditions
Infiltration trenches	N	Not required.
Permeable pavement	N	Permeable surfacing will not be provided to allow infiltration directly to the ground due to the impermeable ground conditions.
Green Roofs	Ν	Not viable due to nature of development
Filter strips	N	Filter strips maybe included in landscape design. Not included in the SuDs calculations, due to the impermeable ground conditions, but they will contribute.
Bio-retention systems/Raingardens	Y	Raingardens may be included in landscape design. Not included in the SuDs calculations, due to the impermeable ground conditions, but they will contribute in a small way.
Blue Roofs	Ν	Not cost effective over the lifespan due to maintenance.
Filter Drain	N	Not currently proposed.
Site Control		
Detention Basins	N	No available room on site for large bodies of water and poses a potential drowning hazard.
Retentions basins	N	No available room on site for large bodies of water and poses a potential drowning hazard.
Regional Control		
Ponds	N	No available room on site for large bodies of water and poses a potential drowning hazard
Wetlands	N	No available room on site for large bodies of water and poses a potential drowning hazard.
Other		
Petrol/Oil interceptor	Y	Included in overall drainage design
Attenuation tank – only as a last resort where other measures are not feasible	Y	Provided on site. Site storage for 1/100 storm + 20% climate change with hydrobrake connection to mains.

## Appendix K – DMURS Statement of Consistency





## HAYES HIGGINS PARTNERSHIP CHARTERED ENGINEERS • PROJECT MANAGERS

## **DMURS Statement of Consistency** For

# Development at Ballymakenny Road, Drogheda, Co. Louth

Louth County Council,



Comhairle Contae **Lú Louth** County Council

2nd Floor, The Glass House, 11 Coke Lane, Smithfield, Dublin 7. Tel: +353 (0)1 661 2321 Email: admin@hayeshiggins.ie Web: www.hhp.ie



## Contents

- 1. Introduction
- 2. Smarter Travel
- 3. Creating a Better Environment
- 4. Key Design Principles
- 5. Conclusion



## **DOCUMENT CONTROL SHEET**

Client	Louth	County	Counci	1				
Project Title	Develo Associ	opment ated W	at Bally orks via	rmaken Moderi	ny, Cor n Metho	nmunity ods of C	/ Facilitie Construc	es & tion
Project Ref.	23D047							
Document Title	DMUR	S Staten	nent of	Consiste	ency			
Document No.	23D04	7						
This Document	DCS	PD	TOC	Text	-	-	-	Appendices
Comprises	1 - 1 5 0						0	
Check								

Revision	Status	Author	Reviewed By	Approved By	Issue Dates
Р	S 179 A	RM	LM	DH	April 2024



## 1. Introduction

Hayes Higgins Partnership has been commissioned to prepare a DMURS Statement of Consistency alongside a Civil Engineering Services Report for the proposed development at Ballymakenny Road, Drogheda, County Louth.

The site is located to the north of Drogheda town centre in County Louth. The existing site is a greenfield site & is zoned A2 New residential Phase 1 in the Louth County Development Plan.

The site is bound by hedgerow and a precast concrete fence to the west. There is a commercial and industrial site to the North that is bound by a steel palisade fence and a greenfield site to the north west that is bound by hedgerow. The site is bound to the east by Ballymakenny Road and to the south by a boundary wall of a residential estate. Resident car parking is provided within the site.

An objective of the current Louth County Council Development Plan is to 'focus on creating places where people want to live and delivering well designed and located housing that is adaptable and resilient to the impacts of climate change and capable of meeting the current and future housing needs of the County' (LCDP 2021-2027, Volume 1, Chapter 3 – Housing)

The proposed development will comprise the construction of 97no. houses including 12no. 2-bed bungalows, 40no. two storey 2-bed houses, 30no. two storey 3-bed houses, 13no. two storey 4-bed houses, and 2no. 3-bed bungalows on a site of c. 3.03 hectares in the townland of Yellowbatter at Ballymakenny Road, Drogheda, Co Louth.

The development will also include the construction of a new entrance onto the Ballymakenny Road; provision of new cycleway, footpath, and public lighting along the Ballymakenny Road; new estate roads and homezones within the site; 120no. car parking spaces including both on-street and in-curtilage parking: cycle parking; hard and soft landscaping including public open spaces, playground, and private gardens; boundary treatments; ESB substation; lighting; laying of underground sewers, mains and pipes; underground pump station and attenuation tanks; and all associated works.

The proposed development will utilise existing services in the vicinity of the site.

The objective of DMURS is 'to put well-designed streets at the heart of communities' (DMURS, 2019) 'Well designed streets can create connected physical, social and transport networks that promote real alternatives to car journeys, namely walking, cycling or public transport' (DMURS, 2019)

The aim of DMURS is to encourage a more sustainable approach to network design and to better the experience of all road users, through reduction is traffic speeds, encourage non-motorised traffic, and



essentially healthier environments and communities. , thereby providing safe, attractive & comfortable streets for all users.

## 2. Smarter Travel

Smarter Travel - A Sustainable Transport Future - A New Transport Policy for Ireland 2009-2020, sets out five (5) key goals:

- a. To reduce overall travel demand
- b. To maximise the efficiency of transport network
- c. To reduce reliance on fossil fuels
- d. To reduce transport emissions
- e. To improve accessibility to public transport

Planning Guidelines: Local Area Plans 2013

For local area plans focused on meeting the needs of communities in newly developing areas, the emphasis should be on:

- providing compact, walkable neighbourhoods incorporating a variety of house types with mixed tenure;
- providing conveniently-located neighbourhood facilities commensurate with projected population, including playground/play areas;
- providing a mix of residential and commercial uses with adequate local employment opportunities;
- designing in active streets and designing out anti-social behaviour through urban master planning, encouraging good mixture of uses and adaptability of buildings; and
- measures to encourage local people to adopt healthier, smarter ways to travel around their local communities, especially walking and cycling.

### Louth County Development Plan 2021 – 2027

Strategic Objective SO 15

Ensure the proper integration of transportation and land use planning through the increased use of sustainable transport modes and the minimisation of travel demand to achieve a sustainable, integrated and low carbon transport system with excellent connectivity both within and beyond the County.

### Strategic Objective SO 17

Facilitate the development of infrastructural projects, which will underpin sustainable development throughout the County during the period of the Plan.

### Housing Policy Objective HOU 3

To support the delivery of social housing in Louth in accordance with the Council's Social Housing Delivery Programme and Government Policy as set out in Rebuilding Ireland: Action Plan for Housing and Homelessness.

### Movement Policy Objective MOV 06

To promote and support the principles of universal design ensuring that all environments are inclusive and are accessible to and can be used to the fullest extent possible by all users regardless of age, ability or disability.

The concept of smarter travel is further exemplified through the 'Principles for Quality Design and Layout' such as 'Placemaking'. 'The design approach aims to add value to a development. This takes account of the location, character, topography, history and any other issues that have



shaped the area in which a development is located.' Chapter 3, Housing, Louth County Development Plan, 2021-2027

## 3. Creating A Better Environment

UK manual for streets (2007) – detail principles that should influence layout and design of streets – principles include:

- a. Connectivity and permeability
- b. Sustainability
- c. Safety
- d. Legibility
- e. Sense of place

The basic concepts of DMURS are identified through the following principles, namely

- i. Connectivity ' A core objective of a segregated approach to street design is the creation of a highly functional traffic network'
- ii. Comfort
- iii. Active Edge and
- iv. Pedestrian Facilities
  - i. Connectivity

DMURS provides guidance on the hierarchy of needs of pedestrians, cyclists, public transport and private vehicles. The attached image from DMURS shows the prioritisation of considerations.

The Ballymakenny Road development proposed plan aligns with consideration of pedestrians throughout the residential estate, ensuring that connectivity is provided to the main road via different access routes, through intended newly constructed pedestrian walkways and links, as well as dropped kerbs and tactile paving to assist with the movement of visually impaired persons.

Although the site is not within immediate connection to any bus routes, access is provided for easy access to link roads for bus routes.





The proposed residential development has been thoughtfully designed to accommodate and promote inter-connectivity between all modes of movements, with a strong leaning towards pedestrian movements, especially noted in the movements across the residential estate.

There is one main road and vehicle access to the residential estate as per accompanying layout and drawings. Through-access roads have been avoided where possible to reduce traffic speed and 'passing-through' traffic. Horizontally straight roads have been accompanied by chicanes and speed humps to reduce the speed of traffic within the residential estate.

The proposed residential development abides by the principle of integrated and non-segregated connectivity of DMURS.

### ii. Comfort

The traffic facilities have been designed to allow for best usage of movement, through adequate pedestrian walkway, cycleway and road widths, along with appropriate turning radii. Footpaths and cycle paths have been kept clear of roadside furniture and clutter which would impede or impair the free flow movement of traffic. Where possible, throughout the site, careful thought has provided non-isolating walkways ensuring persons have freedom of movement. The use of landscaping techniques and layout ensure the inclusivity of all road users and the encouragement of free movement within the designated areas.

### iii. Active Edge

The residential units each have access to the road, enlivening the frontage of the homes and access, with incorporated cul-de-sacs providing a sense of bounded communities.

### iv. Pedestrian Facilities

The proposed residential development has been designed to facilitate and enhance pedestrian movement and connectivity, allowing all units to have direct access to pedestrian facilities and equally providing surveillance and openness of the footpaths increasing the sense of security and safety.

The development has some speed reducing elements incorporated into the design, such as chicanes, slight bends and speed humps as traffic calming facilities, and the development will likely have a 30km/h speed limit..



The pedestrian facilities are 1.8m wide, providing adequate passing space for two persons passing one another comfortably.

DMURS guidelines provides 1.8m to 2.5m widths for areas of low pedestrian activity and moderate pedestrian activity respectively. A 1.8m footpath is most suitable and feasible for the proposed residential development.

The footpath for the proposed residential development provides interconnectivity throughout the estate and access to the main network in the area, providing suitable and comfortable access to the transport links, retail and healthcare facilities.

Cyclepaths are also provided along the existing road, ensuring dedicated cycle lanes and widths of 2.0m, establishing a fully integrated network for cyclists, encouraging the usage of such means of transportation.

## 4. DMURS Design Principles from DMURS 2019 2.2.3 (Key Design Principles)

DMURS gives insight into the four core principles towards a balanced approach to road and street design. The four principles are

Connected Networks

**Multi-Functional Streets** 

Multidisciplinary Approach

Pedestrian Focus

Design Principle 1:

To support the creation of integrated street networks which promote higher levels of permeability and legibility for all users, and in particular more sustainable forms of transport.

Chapter 3 of this Manual is concerned with the creation and management of permeable and legible street networks.



The proposed development is well-connected to the local road network, and allow for the ease of access between individuals and main roads.

The main point of entry / exit into the site is well demarcated and as provides a positive gateway and means of notification to all users and drivers, of the change of conditions, speeds etc.



i.

ii.

iii.

iv.

i. Design Principle - Connected Networks

The proposed development consists of a few local streets which provide access to the dwellings, and throughout the design, careful consideration has been carried out to allow for the greatest connectivity between pedestrians and cyclists, promoting the different modes of transportation and reducing the usage of motorised transportation. ii. Design Principle – Multi-functional Streets

The roads, streets and proposed development layout have considered future potential development and networks to the east of the second field and a hierarchical approach to the design with the DMURS principles increasing the attractiveness of usage for pedestrians and vehicles.

A series of raised pedestrian crossings will also be accommodated into the site, to allow for enhanced flow of pedestrians, reduced traffic speeds and inclusivity of all persons within the residential estate.

Open spaces are also incorporated into the design ensuring the there are sufficient buffer zones to noise, providing areas of calm and enhancing the visibility of the proposed estate.

Incorporated footpaths provide cross site links and multifunctional usage, creating balance between all users and residents, creating a facilitated movements.

iii. Design Principle 3 – Pedestrian Focus

The pedestrian focus of the proposed development design, encourages connectivity throughout the site, heavily focused on pedestrians, along all lines of access.

The encompassing design provides an integrated sense of community and connectivity, providing passive observation of all persons within the estate and increased sense of safety and security.

#### Design Principle 2:

The promotion of multi-functional, placebased streets that balance the needs of all users within a self-regulating environment.

Chapter 4 of this Manual is concerned with the creation of self-regulating streets that cater for the various place and movement functions of a street.



Design Principle 3:

The quality of the street is measured by the quality of the pedestrian environment.

Chapter 4 of this Manual also provides design standards for the creation of a safe, comfortable and attractive pedestrian environment.





### iv. Design Principle 4 – Multidisciplinary Approach

The design of the proposed development, has been developed through the incorporated workmanship of the design team, comprising of eml Architects, Ait Landscape Architects, working together with Hayes Higgins Partnership Consulting Civil and Structural Engineers, providing civil, structural, environmental and mechanical and electrical engineering collaborative approach to the highest standards of design and development of the proposal for the residential estate, that complies with the DMURS recommendations. Design Principle 4:

Greater communication and co-operation between design professionals through the promotion of a plan-led, multidisciplinary approach to design.

Chapter 5 of this Manual is concerned with the implementation of a more integrated approach to street design.



### 5. Conclusion

Hayes Higgins Partnership, Consulting Engineers were appointed by Louth County Council to provide Civil and Structural, Mechanical and Electrical and Environmental advice for the proposed residential development at Ballymakenny Road, Drogheda, Louth County.

The report aims to demonstrate that the proposed residential development achieves the objectives described in DMURS, in co-ordination with the client, various designers and consultants to encourage the use of non-motorised modes of transportation over the use of private vehicles.

With regard to the aforementioned, the proposed development is in keeping with the guidelines and objectives for the Design of Urban Roads and Streets.

